Large Deviations for Random Graphs École d'Été de Probabilités de Saint-Flour XLV - 2015 /

This book addresses the emerging body of literature on the study of rare events in random graphs and networks. For example, what does a random graph look like if by chance it has far more triangles than expected? Until recently, probability theory offered no tools to help answer such questions. Impo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chatterjee, Sourav (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2197
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02877nam a22004935i 4500
001 978-3-319-65816-2
003 DE-He213
005 20170901184921.0
007 cr nn 008mamaa
008 170901s2017 gw | s |||| 0|eng d
020 |a 9783319658162  |9 978-3-319-65816-2 
024 7 |a 10.1007/978-3-319-65816-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Chatterjee, Sourav.  |e author. 
245 1 0 |a Large Deviations for Random Graphs  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XLV - 2015 /  |c by Sourav Chatterjee. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2197 
505 0 |a 1. Introduction -- 2. Preparation -- 3. Basics of graph limit theory -- 4. Large deviation preliminaries -- 5. Large deviations for dense random graphs -- 6. Applications of dense graph large deviations -- 7. Exponential random graph models -- 8. Large deviations for sparse graphs -- Index. 
520 |a This book addresses the emerging body of literature on the study of rare events in random graphs and networks. For example, what does a random graph look like if by chance it has far more triangles than expected? Until recently, probability theory offered no tools to help answer such questions. Important advances have been made in the last few years, employing tools from the newly developed theory of graph limits. This work represents the first book-length treatment of this area, while also exploring the related area of exponential random graphs. All required results from analysis, combinatorics, graph theory and classical large deviations theory are developed from scratch, making the text self-contained and doing away with the need to look up external references. Further, the book is written in a format and style that are accessible for beginning graduate students in mathematics and statistics. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319658155 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2197 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-65816-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)