Machine Learning for the Quantified Self On the Art of Learning from Sensory Data /

This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from state-of-the-art sci...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hoogendoorn, Mark (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Funk, Burkhardt (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Cognitive Systems Monographs, 35
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02913nam a2200481 4500
001 978-3-319-66308-1
003 DE-He213
005 20191022041439.0
007 cr nn 008mamaa
008 170928s2018 gw | s |||| 0|eng d
020 |a 9783319663081  |9 978-3-319-66308-1 
024 7 |a 10.1007/978-3-319-66308-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Hoogendoorn, Mark.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning for the Quantified Self  |h [electronic resource] :  |b On the Art of Learning from Sensory Data /  |c by Mark Hoogendoorn, Burkhardt Funk. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 231 p. 89 illus., 72 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Systems Monographs,  |x 1867-4925 ;  |v 35 
520 |a This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are sample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Funk, Burkhardt.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319663074 
776 0 8 |i Printed edition:  |z 9783319663098 
776 0 8 |i Printed edition:  |z 9783319882154 
830 0 |a Cognitive Systems Monographs,  |x 1867-4925 ;  |v 35 
856 4 0 |u https://doi.org/10.1007/978-3-319-66308-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)