Methods for Partial Differential Equations Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models /

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the "research project for beginners" proposed at the end of the book. It is a valuable resource for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ebert, Marcelo R. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Reissig, Michael (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05073nam a2200445 4500
001 978-3-319-66456-9
003 DE-He213
005 20191025231121.0
007 cr nn 008mamaa
008 180223s2018 gw | s |||| 0|eng d
020 |a 9783319664569  |9 978-3-319-66456-9 
024 7 |a 10.1007/978-3-319-66456-9  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Ebert, Marcelo R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Methods for Partial Differential Equations  |h [electronic resource] :  |b Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models /  |c by Marcelo R. Ebert, Michael Reissig. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XVI, 456 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part 1 -- Introduction -- Part 2 -- Partial differential equations in models -- Basics for partial differential equations -- The Cauchy-Kovalevskaja theorem -- Holmgren's uniqueness theorem -- Method of characteristics -- Burger's equation -- Laplace equation - properties of solutions - starting point of elliptic theory -- Heat equation - properties of solutions - starting point of parabolic theory -- Wave equation - properties of solutions - starting point of hyperbolic theory -- Energies of solutions - one of the most important quantities -- Part 3 -- Phase space analysis for heat equation -- Phase space analysis and smoothing for Schrödinger equations -- Phase space analysis for wave models -- Phase space analysis for plate models -- The method of stationary phase and applications -- Part 4 -- Semilinear heat models -- Semilinear classical damped wave models -- Semilinear wave models with a special structural dissipation -- Semilinear classical wave models -- Semilinear Schrödinger models -- Linear hyperbolic systems -- Part 5 -- Research projects for beginners -- Background material. 
520 |a This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the "research project for beginners" proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material. 
650 0 |a Partial differential equations. 
650 1 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
700 1 |a Reissig, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319664552 
776 0 8 |i Printed edition:  |z 9783319664576 
776 0 8 |i Printed edition:  |z 9783030097721 
856 4 0 |u https://doi.org/10.1007/978-3-319-66456-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)