Ergodic Optimization in the Expanding Case Concepts, Tools and Applications /

This book focuses on the interpretation of ergodic optimal problems as questions of variational dynamics, employing a comparable approach to that of the Aubry-Mather theory for Lagrangian systems. Ergodic optimization is primarily concerned with the study of optimizing probability measures. This wor...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Garibaldi, Eduardo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02891nam a22005535i 4500
001 978-3-319-66643-3
003 DE-He213
005 20170921155725.0
007 cr nn 008mamaa
008 170921s2017 gw | s |||| 0|eng d
020 |a 9783319666433  |9 978-3-319-66643-3 
024 7 |a 10.1007/978-3-319-66643-3  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Garibaldi, Eduardo.  |e author. 
245 1 0 |a Ergodic Optimization in the Expanding Case  |h [electronic resource] :  |b Concepts, Tools and Applications /  |c by Eduardo Garibaldi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 73 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Chapter 01- Introduction -- Chapter 02- Duality -- Chapter 03- Calibrated sub-actions -- Chapter 04- Aubry set.-Chapter 05- Mañé potential and Peierls barrier -- Chapter 06- Representation of calibrated sub-actions -- Chapter 07- Separating sub-actions -- Chapter 08- Further properties of sub-actions -- Chapter 09- Relations with the thermodynamic formalism -- Appendix- Bounded measurable sub-actions -- Bibliography. 
520 |a This book focuses on the interpretation of ergodic optimal problems as questions of variational dynamics, employing a comparable approach to that of the Aubry-Mather theory for Lagrangian systems. Ergodic optimization is primarily concerned with the study of optimizing probability measures. This work presents and discusses the fundamental concepts of the theory, including the use and relevance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Calculus of variations. 
650 0 |a Mathematical optimization. 
650 0 |a Thermodynamics. 
650 0 |a Solid state physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Continuous Optimization. 
650 2 4 |a Thermodynamics. 
650 2 4 |a Solid State Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319666426 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-66643-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)