Anomaly Detection Principles and Algorithms

This book provides a readable and elegant presentation of the principles of anomaly detection,providing an easy introduction for newcomers to the field. A large number of algorithms are succinctly described, along with a presentation of their strengths and weaknesses. The authors also cover algorith...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mehrotra, Kishan G. (Συγγραφέας), Mohan, Chilukuri K. (Συγγραφέας), Huang, HuaMing (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Terrorism, Security, and Computation,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03523nam a22005055i 4500
001 978-3-319-67526-8
003 DE-He213
005 20171118175901.0
007 cr nn 008mamaa
008 171118s2017 gw | s |||| 0|eng d
020 |a 9783319675268  |9 978-3-319-67526-8 
024 7 |a 10.1007/978-3-319-67526-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Mehrotra, Kishan G.  |e author. 
245 1 0 |a Anomaly Detection Principles and Algorithms  |h [electronic resource] /  |c by Kishan G. Mehrotra, Chilukuri K. Mohan, HuaMing Huang. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXII, 217 p. 66 illus., 55 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Terrorism, Security, and Computation,  |x 2197-8778 
505 0 |a 1 Introduction -- 2 Anomaly Detection -- 3 Distance-based Anomaly Detection Approaches -- 4 Clustering-based Anomaly Detection Approaches -- 5 Model-based Anomaly Detection Approaches -- 6 Distance and Density Based Approaches -- 7 Rank Based Approaches -- 8 Ensemble Methods -- 9 Algorithms for Time Series Data -- Datasets for Evaluation -- Datasets for Time Series Experiments. 
520 |a This book provides a readable and elegant presentation of the principles of anomaly detection,providing an easy introduction for newcomers to the field. A large number of algorithms are succinctly described, along with a presentation of their strengths and weaknesses. The authors also cover algorithms that address different kinds of problems of interest with single and multiple time series data and multi-dimensional data. New ensemble anomaly detection algorithms are  described, utilizing the benefits provided by diverse algorithms, each of which work well on some kinds of data.  With advancements in technology and the extensive use of the internet as a medium for communications and commerce, there has been a tremendous increase in the threats faced by individuals and organizations from attackers and criminal entities. Variations in the observable behaviors of individuals (from others and from their own past behaviors) have been found to be useful in predicting potential problems of various kinds. Hence computer scientists and statisticians have been conducting research on automatically identifying anomalies in large datasets.  This book will primarily target practitioners and researchers who are newcomers to the area of modern anomaly detection techniques. Advanced-level students in computer science will also find this book helpful with their studies. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Security. 
700 1 |a Mohan, Chilukuri K.  |e author. 
700 1 |a Huang, HuaMing.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319675244 
830 0 |a Terrorism, Security, and Computation,  |x 2197-8778 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-67526-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)