Essential Real Analysis

This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses. Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely f...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Field, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03420nam a22005175i 4500
001 978-3-319-67546-6
003 DE-He213
005 20171106144520.0
007 cr nn 008mamaa
008 171106s2017 gw | s |||| 0|eng d
020 |a 9783319675466  |9 978-3-319-67546-6 
024 7 |a 10.1007/978-3-319-67546-6  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Field, Michael.  |e author. 
245 1 0 |a Essential Real Analysis  |h [electronic resource] /  |c by Michael Field. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 450 p. 30 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a 1 Sets, functions and the real numbers -- 2 Basic properties of real numbers, sequences and continuous functions -- 3 Infinite series -- 4 Uniform convergence -- 5 Functions -- 6. Topics from classical analysis: The Gamma-function and the Euler–Maclaurin formula -- 7 Metric spaces -- 8 Fractals and iterated function systems -- 9 Differential calculus on Rm -- Bibliography. Index. 
520 |a This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses. Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely found in such detail in an undergraduate textbook such as the construction of non-analytic smooth functions, applications of the Euler-Maclaurin formula to estimates, and fractal geometry.  Drawing on the author’s extensive teaching and research experience, the exposition is guided by carefully chosen examples and counter-examples, with the emphasis placed on the key ideas underlying the theory. Much of the content is informed by its applicability: Fourier analysis is developed to the point where it can be rigorously applied to partial differential equations or computation, and the theory of metric spaces includes applications to ordinary differential equations and fractals. Essential Real Analysis will appeal to students in pure and applied mathematics, as well as scientists looking to acquire a firm footing in mathematical analysis. Numerous exercises of varying difficulty, including some suitable for group work or class discussion, make this book suitable for self-study as well as lecture courses. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Functions of real variables. 
650 0 |a Sequences (Mathematics). 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Topology. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319675459 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-67546-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)