Spatio-Temporal Graph Data Analytics

This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transport...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gunturi, Venkata M. V. (Συγγραφέας), Shekhar, Shashi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03215nam a22004935i 4500
001 978-3-319-67771-2
003 DE-He213
005 20171215114936.0
007 cr nn 008mamaa
008 171215s2017 gw | s |||| 0|eng d
020 |a 9783319677712  |9 978-3-319-67771-2 
024 7 |a 10.1007/978-3-319-67771-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a UMT  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
100 1 |a Gunturi, Venkata M. V.  |e author. 
245 1 0 |a Spatio-Temporal Graph Data Analytics  |h [electronic resource] /  |c by Venkata M. V. Gunturi, Shashi Shekhar. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 100 p. 61 illus., 30 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction -- 2 Fundamental Concepts for Spatio-Temporal Graphs -- 3 Representational Models for Spatio-Temporal Graphs -- 4 Fastest Path for a Single Departure-Time -- 5 Advanced Concepts: Critical Time Point Based Approaches -- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs -- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data -- 8 Trend Topics: Engine Data Analytics. 
520 |a This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while  ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area.  This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for  researchers and practitioners in the field of navigational algorithms. 
650 0 |a Computer science. 
650 0 |a Transportation. 
650 0 |a Database management. 
650 0 |a Regional economics. 
650 0 |a Spatial economics. 
650 1 4 |a Computer Science. 
650 2 4 |a Database Management. 
650 2 4 |a Transportation. 
650 2 4 |a Regional/Spatial Science. 
700 1 |a Shekhar, Shashi.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319677705 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-67771-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)