AI Injected e-Learning The Future of Online Education /

This book reviews a blend of artificial intelligence (AI) approaches that can take e-learning to the next level by adding value through customization. It investigates three methods: crowdsourcing via social networks; user profiling through machine learning techniques, and personal learning portfolio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Montebello, Matthew (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Studies in Computational Intelligence, 745
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03324nam a2200481 4500
001 978-3-319-67928-0
003 DE-He213
005 20191029051357.0
007 cr nn 008mamaa
008 171027s2018 gw | s |||| 0|eng d
020 |a 9783319679280  |9 978-3-319-67928-0 
024 7 |a 10.1007/978-3-319-67928-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Montebello, Matthew.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a AI Injected e-Learning  |h [electronic resource] :  |b The Future of Online Education /  |c by Matthew Montebello. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIX, 86 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 745 
505 0 |a Introduction -- e-Learning so far -- MOOCs, Crowdsourcing and Social Networks -- User Profiling and Personalisation -- Personal Learning Networks, Portfolios and Environments -- Customised e-Learning -- Looking Ahead. 
520 |a This book reviews a blend of artificial intelligence (AI) approaches that can take e-learning to the next level by adding value through customization. It investigates three methods: crowdsourcing via social networks; user profiling through machine learning techniques, and personal learning portfolios using learning analytics. Technology and education have drawn closer together over the years as they complement each other within the domain of e-learning, and different generations of online education reflect the evolution of new technologies as researcher and developers continuously seek to optimize the electronic medium to enhance the effectiveness of e-learning. Artificial intelligence (AI) for e-learning promises personalized online education through a combination of different intelligent techniques that are grounded in established learning theories while at the same time addressing a number of common e-learning issues. This book is intended for education technologists and e-learning researchers as well as for a general readership interested in the evolution of online education based on techniques like machine learning, crowdsourcing, and learner profiling that can be merged to characterize the future of personalized e-learning. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319679273 
776 0 8 |i Printed edition:  |z 9783319679297 
776 0 8 |i Printed edition:  |z 9783319885131 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 745 
856 4 0 |u https://doi.org/10.1007/978-3-319-67928-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)