Non-Local Partial Differential Equations for Engineering and Biology Mathematical Modeling and Analysis /

This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kavallaris, Nikos I. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Suzuki, Takashi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Mathematics for Industry, 31
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04656nam a2200589 4500
001 978-3-319-67944-0
003 DE-He213
005 20191220130313.0
007 cr nn 008mamaa
008 171128s2018 gw | s |||| 0|eng d
020 |a 9783319679440  |9 978-3-319-67944-0 
024 7 |a 10.1007/978-3-319-67944-0  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.1  |2 23 
100 1 |a Kavallaris, Nikos I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Non-Local Partial Differential Equations for Engineering and Biology  |h [electronic resource] :  |b Mathematical Modeling and Analysis /  |c by Nikos I. Kavallaris, Takashi Suzuki. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIX, 300 p. 23 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics for Industry,  |x 2198-350X ;  |v 31 
505 0 |a Dedication -- Preface -- Acknowledgements -- Part I Applications in Engineering -- Micro-electro-mechanical-systems(MEMS) -- Ohmic Heating Phenomena -- Linear Friction Welding -- Resistance Spot Welding -- Part II Applications in Biology -- Gierer-Meinhardt System -- A Non-local Model Illustrating Replicator Dynamics -- A Non-local Model Arising in Chemotaxis -- A Non-local Reaction-Diffusion System Illustrating Cell Dynamics -- Appendices -- Index. 
520 |a This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Mathematical physics. 
650 0 |a Bioinformatics . 
650 0 |a Computational biology . 
650 0 |a Partial differential equations. 
650 0 |a Chemical engineering. 
650 1 4 |a Theoretical and Applied Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/T15001 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13120 
650 2 4 |a Computer Appl. in Life Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/L17004 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
650 2 4 |a Industrial Chemistry/Chemical Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/C27000 
700 1 |a Suzuki, Takashi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319679426 
776 0 8 |i Printed edition:  |z 9783319679433 
776 0 8 |i Printed edition:  |z 9783319885155 
830 0 |a Mathematics for Industry,  |x 2198-350X ;  |v 31 
856 4 0 |u https://doi.org/10.1007/978-3-319-67944-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)