Properties of Closed 3-Braids and Braid Representations of Links

This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu’s normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are ident...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stoimenow, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu’s normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties.
Φυσική περιγραφή:X, 110 p. 89 illus. online resource.
ISBN:9783319681498
ISSN:2191-8198