Properties of Closed 3-Braids and Braid Representations of Links

This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu’s normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are ident...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stoimenow, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02881nam a22005535i 4500
001 978-3-319-68149-8
003 DE-He213
005 20171129164605.0
007 cr nn 008mamaa
008 171129s2017 gw | s |||| 0|eng d
020 |a 9783319681498  |9 978-3-319-68149-8 
024 7 |a 10.1007/978-3-319-68149-8  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Stoimenow, Alexander.  |e author. 
245 1 0 |a Properties of Closed 3-Braids and Braid Representations of Links  |h [electronic resource] /  |c by Alexander Stoimenow. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a X, 110 p. 89 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Introduction -- 2. Preliminaries, basic definitions and conventions -- 3. Xu’s form and Seifert surfaces -- 4. Polynomial invariants -- 5. Positivity of 3-braid links -- 6. Studying alternating links by braid index -- 7. Applications of the representation theory -- Appendix. –References.-Index. 
520 |a This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu’s normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-braids are part of the work. Written with knot theorists, topologists,and graduate students in mind, this book features the identification and analysis of effective techniques for diagrammatic examples with unexpected properties. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Functions of complex variables. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Topology. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319681481 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-68149-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)