Covariant Schrödinger Semigroups on Riemannian Manifolds

This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Güneysu, Batu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017.
Σειρά:Operator Theory: Advances and Applications, 264
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03586nam a22004695i 4500
001 978-3-319-68903-6
003 DE-He213
005 20171222110554.0
007 cr nn 008mamaa
008 171222s2017 gw | s |||| 0|eng d
020 |a 9783319689036  |9 978-3-319-68903-6 
024 7 |a 10.1007/978-3-319-68903-6  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 |a Güneysu, Batu.  |e author. 
245 1 0 |a Covariant Schrödinger Semigroups on Riemannian Manifolds  |h [electronic resource] /  |c by Batu Güneysu. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2017. 
300 |a XVIII, 239 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 264 
505 0 |a Sobolev spaces on vector bundles -- Smooth heat kernels on vector bundles -- Basis differential operators on Riemannian manifolds -- Some specific results for the minimal heat kernel -- Wiener measure and Brownian motion on Riemannian manifolds -- Contractive Dynkin potentials and Kato potentials -- Foundations of covariant Schrödinger semigroups -- Compactness of resolvents for covariant Schrödinger operators -- L^p properties of covariant Schrödinger semigroups -- Continuity properties of covariant Schrödinger semigroups -- Integral kernels for covariant Schrödinger semigroup -- Essential self-adjointness of covariant Schrödinger semigroups -- Form cores -- Applications. 
520 |a This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities.  The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials. The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319689029 
830 0 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 264 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-68903-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)