Modern Algorithms of Cluster Analysis

This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc.   The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the relat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wierzchoń, Slawomir (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kłopotek, Mieczyslaw (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Studies in Big Data, 34
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03641nam a2200529 4500
001 978-3-319-69308-8
003 DE-He213
005 20191021223409.0
007 cr nn 008mamaa
008 171229s2018 gw | s |||| 0|eng d
020 |a 9783319693088  |9 978-3-319-69308-8 
024 7 |a 10.1007/978-3-319-69308-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Wierzchoń, Slawomir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modern Algorithms of Cluster Analysis  |h [electronic resource] /  |c by Slawomir Wierzchoń, Mieczyslaw Kłopotek. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XX, 421 p. 51 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 34 
520 |a This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc.   The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem.   Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented.   In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection. 
650 0 |a Computational intelligence. 
650 0 |a Big data. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
650 2 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
650 2 4 |a Big Data/Analytics.  |0 http://scigraph.springernature.com/things/product-market-codes/522070 
700 1 |a Kłopotek, Mieczyslaw.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319693071 
776 0 8 |i Printed edition:  |z 9783319693095 
776 0 8 |i Printed edition:  |z 9783319887524 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 34 
856 4 0 |u https://doi.org/10.1007/978-3-319-69308-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)