Maximum-Entropy Networks Pattern Detection, Network Reconstruction and Graph Combinatorics /

This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Squartini, Tiziano (Συγγραφέας), Garlaschelli, Diego (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Complexity,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04384nam a22005295i 4500
001 978-3-319-69438-2
003 DE-He213
005 20171121234719.0
007 cr nn 008mamaa
008 171121s2017 gw | s |||| 0|eng d
020 |a 9783319694382  |9 978-3-319-69438-2 
024 7 |a 10.1007/978-3-319-69438-2  |2 doi 
040 |d GrThAP 
050 4 |a QC1-QC999 
072 7 |a PHU  |2 bicssc 
072 7 |a PBKD  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Squartini, Tiziano.  |e author. 
245 1 0 |a Maximum-Entropy Networks  |h [electronic resource] :  |b Pattern Detection, Network Reconstruction and Graph Combinatorics /  |c by Tiziano Squartini, Diego Garlaschelli. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 116 p. 34 illus., 31 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Complexity,  |x 2191-5326 
505 0 |a Introduction -- Maximum-entropy ensembles of graphs -- Constructing constrained graph ensembles: why and how? -- Comparing models obtained from different constraints -- Pattern detection -- Detecting assortativity and clustering -- Detecting dyadic motifs -- Detecting triadic motifs -- Some extensions to weighted networks -- Network reconstruction -- Reconstructing network properties from partial information -- The Enhanced Configuration Model -- Further reducing the observational requirements -- Graph combinatorics -- A dual route to combinatorics? -- ‘Soft’ combinatorial enumeration -- Quantifying ensemble (non)equivalence -- Breaking of equivalence between ensembles -- Implications of (non)equivalence for combinatorics -- “What then shall we choose?” Hardness or softness? -- Concluding remarks. 
520 |a This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem of network reconstruction and introduces various advanced techniques to reliably infer the topology of a network from partial local information. Chapter 5 is devoted to the reformulation of certain “hard” combinatorial operations, such as the enumeration and unbiased sampling of graphs with given constraints, within a “softened” maximum-entropy framework. A final chapter offers various overarching remarks and take-home messages. By requiring no prior knowledge of network theory, the book targets a broad audience ranging from PhD students approaching these topics for the first time to senior researchers interested in the application of advanced network techniques to their field. 
650 0 |a Physics. 
650 0 |a System theory. 
650 0 |a Graph theory. 
650 0 |a Complexity, Computational. 
650 1 4 |a Physics. 
650 2 4 |a Applications of Graph Theory and Complex Networks. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
650 2 4 |a Complex Systems. 
650 2 4 |a Graph Theory. 
650 2 4 |a Complexity. 
700 1 |a Garlaschelli, Diego.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319694368 
830 0 |a SpringerBriefs in Complexity,  |x 2191-5326 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-69438-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)