Towards Integrative Machine Learning and Knowledge Extraction BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers /

The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Holzinger, Andreas (Επιμελητής έκδοσης), Goebel, Randy (Επιμελητής έκδοσης), Ferri, Massimo (Επιμελητής έκδοσης), Palade, Vasile (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Computer Science, 10344
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04402nam a22006015i 4500
001 978-3-319-69775-8
003 DE-He213
005 20171028141530.0
007 cr nn 008mamaa
008 171028s2017 gw | s |||| 0|eng d
020 |a 9783319697758  |9 978-3-319-69775-8 
024 7 |a 10.1007/978-3-319-69775-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Towards Integrative Machine Learning and Knowledge Extraction  |h [electronic resource] :  |b BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers /  |c edited by Andreas Holzinger, Randy Goebel, Massimo Ferri, Vasile Palade. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 207 p. 57 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10344 
505 0 |a Towards integrative Machine Learning & Knowledge Extraction -- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach -- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization -- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining -- Probabilistic Logic Programming in Action -- Persistent topology for natural data analysis — A survey -- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques -- A Brief Philosophical Note on Information -- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline -- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images -- Topological characteristics of oil and gas reservoirs and their applications -- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment. 
520 |a The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain.  The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning. 
650 0 |a Computer science. 
650 0 |a Computer organization. 
650 0 |a Software engineering. 
650 0 |a Mathematical statistics. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Information Systems and Communication Service. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
650 2 4 |a Computer Systems Organization and Communication Networks. 
700 1 |a Holzinger, Andreas.  |e editor. 
700 1 |a Goebel, Randy.  |e editor. 
700 1 |a Ferri, Massimo.  |e editor. 
700 1 |a Palade, Vasile.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319697741 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10344 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-69775-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)