Mixed-Effects Regression Models in Linguistics

When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-s...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Speelman, Dirk (Editor, http://id.loc.gov/vocabulary/relators/edt), Heylen, Kris (Editor, http://id.loc.gov/vocabulary/relators/edt), Geeraerts, Dirk (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Series:Quantitative Methods in the Humanities and Social Sciences,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04173nam a2200529 4500
001 978-3-319-69830-4
003 DE-He213
005 20191026091410.0
007 cr nn 008mamaa
008 180207s2018 gw | s |||| 0|eng d
020 |a 9783319698304  |9 978-3-319-69830-4 
024 7 |a 10.1007/978-3-319-69830-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC027000  |2 bisacsh 
072 7 |a JHBC  |2 thema 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Mixed-Effects Regression Models in Linguistics  |h [electronic resource] /  |c edited by Dirk Speelman, Kris Heylen, Dirk Geeraerts. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VII, 146 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Quantitative Methods in the Humanities and Social Sciences,  |x 2199-0956 
505 0 |a Chapter 1. Introduction -- Chapter 2. Mixed Models with Emphasis on Large Data Sets -- Chapter 3. The L2 Impact on Learning L3 Dutch: The L2 Distance Effect Job -- Chapter 4. Autocorrelated Errors in Experimental Data in the Language Sciences: Some Solutions Offered by Generalized Additive Mixed Models -- Chapter 5. Border Effects Among Catalan Dialects -- Chapter 6. Evaluating Logistic Mixed-Effects Models of Corpus-Linguistic Data in Light of Lexical Diffusion -- Chapter 7. (Non)metonymic Expressions for Government in Chinese: A Mixed-Effects Logistic Regression Analysis. 
520 |a When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addresses a number of common complications, misunderstandings, and pitfalls. Topics that are covered include the use of huge datasets, dealing with non-linear relations, issues of cross-validation, and issues of model selection and complex random structures. The volume features examples from various subfields in linguistics. The book also provides R code for a wide range of analyses. 
650 0 |a Statistics . 
650 0 |a Semantics. 
650 0 |a Syntax. 
650 1 4 |a Statistics for Social Sciences, Humanities, Law.  |0 http://scigraph.springernature.com/things/product-market-codes/S17040 
650 2 4 |a Semantics.  |0 http://scigraph.springernature.com/things/product-market-codes/N39000 
650 2 4 |a Syntax.  |0 http://scigraph.springernature.com/things/product-market-codes/N45000 
700 1 |a Speelman, Dirk.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Heylen, Kris.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Geeraerts, Dirk.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319698281 
776 0 8 |i Printed edition:  |z 9783319698298 
776 0 8 |i Printed edition:  |z 9783319888507 
830 0 |a Quantitative Methods in the Humanities and Social Sciences,  |x 2199-0956 
856 4 0 |u https://doi.org/10.1007/978-3-319-69830-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)