Mixed-Effects Regression Models in Linguistics

When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Speelman, Dirk (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Heylen, Kris (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Geeraerts, Dirk (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Quantitative Methods in the Humanities and Social Sciences,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Chapter 1. Introduction
  • Chapter 2. Mixed Models with Emphasis on Large Data Sets
  • Chapter 3. The L2 Impact on Learning L3 Dutch: The L2 Distance Effect Job
  • Chapter 4. Autocorrelated Errors in Experimental Data in the Language Sciences: Some Solutions Offered by Generalized Additive Mixed Models
  • Chapter 5. Border Effects Among Catalan Dialects
  • Chapter 6. Evaluating Logistic Mixed-Effects Models of Corpus-Linguistic Data in Light of Lexical Diffusion
  • Chapter 7. (Non)metonymic Expressions for Government in Chinese: A Mixed-Effects Logistic Regression Analysis.