Mixed-Effects Regression Models in Linguistics
When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-s...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | Quantitative Methods in the Humanities and Social Sciences,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1. Introduction
- Chapter 2. Mixed Models with Emphasis on Large Data Sets
- Chapter 3. The L2 Impact on Learning L3 Dutch: The L2 Distance Effect Job
- Chapter 4. Autocorrelated Errors in Experimental Data in the Language Sciences: Some Solutions Offered by Generalized Additive Mixed Models
- Chapter 5. Border Effects Among Catalan Dialects
- Chapter 6. Evaluating Logistic Mixed-Effects Models of Corpus-Linguistic Data in Light of Lexical Diffusion
- Chapter 7. (Non)metonymic Expressions for Government in Chinese: A Mixed-Effects Logistic Regression Analysis.