Advances on Computational Intelligence in Energy The Applications of Nature-Inspired Metaheuristic Algorithms in Energy /

Addressing the applications of computational intelligence algorithms in energy, this book presents a systematic procedure that illustrates the practical steps required for applying bio-inspired, meta-heuristic algorithms in energy, such as the prediction of oil consumption and other energy products....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Herawan, Tutut (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Chiroma, Haruna (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Abawajy, Jemal H. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Green Energy and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04317nam a2200553 4500
001 978-3-319-69889-2
003 DE-He213
005 20191022112444.0
007 cr nn 008mamaa
008 190712s2019 gw | s |||| 0|eng d
020 |a 9783319698892  |9 978-3-319-69889-2 
024 7 |a 10.1007/978-3-319-69889-2  |2 doi 
040 |d GrThAP 
050 4 |a TK1001-1841 
072 7 |a TH  |2 bicssc 
072 7 |a TEC031000  |2 bisacsh 
072 7 |a TH  |2 thema 
082 0 4 |a 621.042  |2 23 
245 1 0 |a Advances on Computational Intelligence in Energy  |h [electronic resource] :  |b The Applications of Nature-Inspired Metaheuristic Algorithms in Energy /  |c edited by Tutut Herawan, Haruna Chiroma, Jemal H. Abawajy. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 215 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Green Energy and Technology,  |x 1865-3529 
505 0 |a Basic descriptions of computational intelligence algorithms (single, hybrid, ensemble, integrated and etc -- Credible sources of energy datasets -- Applications of computational algorithms in energy -- Practical application of cuckoo search and neural network in the prediction of OECD oil consumption -- Hybrid of Fuzzy systems and particle swarm optimization in the forecasting gas flaring from oil consumption -- Forecasting of OECD gas flaring using Elman neural network and cuckoo search algorithm -- Artificial bee colony and neural network for the forecasting of Malaysia renewable energy -- Soft computing methods in the modelling of OECD carbon dioxide emission from petroleum consumption -- Modelling energy crises based on Soft computing -- The forecasting of WTI and Dubai crude oil prices benchmarks based on soft computing -- A new approach for the forecasting of IAEA energy -- Modelling of gasoline prices using fuzzy multi-criteria decision making -- Soft computing for the prediction of Australia petroleum consumption based on OECD countries -- Future research problems in the area of computational intelligence algorithms in energy. . 
520 |a Addressing the applications of computational intelligence algorithms in energy, this book presents a systematic procedure that illustrates the practical steps required for applying bio-inspired, meta-heuristic algorithms in energy, such as the prediction of oil consumption and other energy products. Contributions include research findings, projects, surveying work and industrial experiences that describe significant advances in the applications of computational intelligence algorithms in energy. For easy understanding, the text provides practical simulation results, convergence and learning curves as well as illustrations and tables. Providing a valuable resource for undergraduate and postgraduate students alike, it is also intended for researchers in the fields of computational intelligence and energy. 
650 0 |a Energy systems. 
650 0 |a Computational intelligence. 
650 0 |a Algorithms. 
650 0 |a Energy policy. 
650 0 |a Energy and state. 
650 1 4 |a Energy Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/115000 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Algorithms.  |0 http://scigraph.springernature.com/things/product-market-codes/M14018 
650 2 4 |a Energy Policy, Economics and Management.  |0 http://scigraph.springernature.com/things/product-market-codes/112000 
700 1 |a Herawan, Tutut.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Chiroma, Haruna.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Abawajy, Jemal H.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319698885 
776 0 8 |i Printed edition:  |z 9783319698908 
830 0 |a Green Energy and Technology,  |x 1865-3529 
856 4 0 |u https://doi.org/10.1007/978-3-319-69889-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENE 
950 |a Energy (Springer-40367)