Recurrent Neural Networks for Short-Term Load Forecasting An Overview and Comparative Analysis /

The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bianchi, Filippo Maria (Συγγραφέας), Maiorino, Enrico (Συγγραφέας), Kampffmeyer, Michael C. (Συγγραφέας), Rizzi, Antonello (Συγγραφέας), Jenssen, Robert (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03917nam a22005895i 4500
001 978-3-319-70338-1
003 DE-He213
005 20171109172652.0
007 cr nn 008mamaa
008 171109s2017 gw | s |||| 0|eng d
020 |a 9783319703381  |9 978-3-319-70338-1 
024 7 |a 10.1007/978-3-319-70338-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Bianchi, Filippo Maria.  |e author. 
245 1 0 |a Recurrent Neural Networks for Short-Term Load Forecasting  |h [electronic resource] :  |b An Overview and Comparative Analysis /  |c by Filippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi, Robert Jenssen. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a IX, 72 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Properties and Training in Recurrent Neural Networks -- Recurrent Neural Networks Architectures -- Other Recurrent Neural Networks Models -- Synthetic Time Series -- Real-World Load Time Series -- Experiments -- Conclusions.  . 
520 |a The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series. 
650 0 |a Computer science. 
650 0 |a Computer software  |x Reusability. 
650 0 |a Computer system failures. 
650 0 |a Artificial intelligence. 
650 0 |a Power electronics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a System Performance and Evaluation. 
650 2 4 |a Power Electronics, Electrical Machines and Networks. 
650 2 4 |a Energy Efficiency. 
650 2 4 |a Performance and Reliability. 
700 1 |a Maiorino, Enrico.  |e author. 
700 1 |a Kampffmeyer, Michael C.  |e author. 
700 1 |a Rizzi, Antonello.  |e author. 
700 1 |a Jenssen, Robert.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319703374 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-70338-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)