Cognitive Computing for Big Data Systems Over IoT Frameworks, Tools and Applications /

This book brings a high level of fluidity to analytics and addresses recent trends, innovative ideas, challenges and cognitive computing solutions in big data and the Internet of Things (IoT). It explores domain knowledge, data science reasoning and cognitive methods in the context of the IoT, exten...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sangaiah, Arun Kumar (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Thangavelu, Arunkumar (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Meenakshi Sundaram, Venkatesan (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes on Data Engineering and Communications Technologies, 14
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04885nam a2200493 4500
001 978-3-319-70688-7
003 DE-He213
005 20191026101947.0
007 cr nn 008mamaa
008 171230s2018 gw | s |||| 0|eng d
020 |a 9783319706887  |9 978-3-319-70688-7 
024 7 |a 10.1007/978-3-319-70688-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Cognitive Computing for Big Data Systems Over IoT  |h [electronic resource] :  |b Frameworks, Tools and Applications /  |c edited by Arun Kumar Sangaiah, Arunkumar Thangavelu, Venkatesan Meenakshi Sundaram. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 375 p. 81 illus., 51 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes on Data Engineering and Communications Technologies,  |x 2367-4512 ;  |v 14  
505 0 |a Beyond Automation: The Cognitive IoT - Artificial Intelligence Brings Sense to the Internet of Things -- Cybercrimes Investigation and Intrusion Detection in Internet of Things Based on Data Science Methods -- Modeling and Analysis of Multi-Objective Service Selection Scheme in IoT-Cloud Environment -- Cognitive data science automatic fraud detection solution, based on Benford' s law, fuzzy logic with elements of machine learning -- Reliable Cross Layer Design for E-health Applications - IoT Perspective -- Erasure Codes for Reliable Communication in Internet-ofThings (IoT) embedded with Wireless Sensors -- Review: Security and Privacy Issues of Fog Computing -- A Review on Security and Privacy Challenges of Big Data -- Recent Developments in Deep Learning with Applications -- High-Level Knowledge Representation and Reasoning in a Cognitive IoT/WoT Context -- Applications of IoT in Healthcare -- Security Stipulations on IoT Networks -- A Hyper Heuristic Localization Based Cloned Node Detection Technique using GSA Based Simulated Annealing in Sensor Networks -- Review on Analysis of the Application Areas and Algorithms used in Data Wrangling in Big Data -- An innovation model for Smart Traffic Management System Using Internet of Things(IoT). . 
520 |a This book brings a high level of fluidity to analytics and addresses recent trends, innovative ideas, challenges and cognitive computing solutions in big data and the Internet of Things (IoT). It explores domain knowledge, data science reasoning and cognitive methods in the context of the IoT, extending current data science approaches by incorporating insights from experts as well as a notion of artificial intelligence, and performing inferences on the knowledge The book provides a comprehensive overview of the constituent paradigms underlying cognitive computing methods, which illustrate the increased focus on big data in IoT problems as they evolve. It includes novel, in-depth fundamental research contributions from a methodological/application in data science accomplishing sustainable solution for the future perspective. Mainly focusing on the design of the best cognitive embedded data science technologies to process and analyze the large amount of data collected through the IoT, and aid better decision making, the book discusses adapting decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures as well as big data and IoT problems can be handled in practice. This book is a valuable resource for scientists, professionals, researchers, and academicians dealing with the new challenges and advances in the specific areas of cognitive computing and data science approaches. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
700 1 |a Sangaiah, Arun Kumar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Thangavelu, Arunkumar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Meenakshi Sundaram, Venkatesan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319706870 
776 0 8 |i Printed edition:  |z 9783319706894 
830 0 |a Lecture Notes on Data Engineering and Communications Technologies,  |x 2367-4512 ;  |v 14  
856 4 0 |u https://doi.org/10.1007/978-3-319-70688-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)