Spectral Theory and Quantum Mechanics Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation /

This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attenti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Moretti, Valter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:2nd ed. 2017.
Σειρά:UNITEXT, 110
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03891nam a22005175i 4500
001 978-3-319-70706-8
003 DE-He213
005 20180130111620.0
007 cr nn 008mamaa
008 180130s2017 gw | s |||| 0|eng d
020 |a 9783319707068  |9 978-3-319-70706-8 
024 7 |a 10.1007/978-3-319-70706-8  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Moretti, Valter.  |e author. 
245 1 0 |a Spectral Theory and Quantum Mechanics  |h [electronic resource] :  |b Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation /  |c by Valter Moretti. 
250 |a 2nd ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XXII, 950 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 ;  |v 110 
505 0 |a 1 Introduction and Mathematical Backgrounds -- 2 Normed and Banach Spaces, Examples and Applications -- 3 Hilbert Spaces and Bounded Operators -- 4 Families of Compact Operators on Hilbert Spaces and Fundamental Properties -- 5 Densely-Defined Unbounded Operators on Hilbert Spaces -- 6 Phenomenology of Quantum Systems and Wave Mechanics: an Overview -- 7 The First 4 Axioms of QM: Propositions, Quantum States and Observables -- 8 Spectral Theory I: Generalities, Abstract C -algebras and Operators in B(H) -- 9 Spectral theory II: Unbounded Operators on Hilbert Spaces -- 10 Spectral Theory III: Applications -- 11 Mathematical Formulation of Non-Relativistic Quantum Mechanics -- 12 Introduction to Quantum Symmetries -- 13 Selected Advanced Topics in Quantum Mechanics -- 14 Introduction to the Algebraic Formulation of Quantum Theories -- 15 Appendix A: Order Relations and Groups -- 16 Appendix B: Elements of Differential Geometry. 
520 |a This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319707051 
830 0 |a UNITEXT,  |x 2038-5714 ;  |v 110 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-70706-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)