New Trends in Parameter Identification for Mathematical Models
The Proceedings volume contains 16 contributions to the IMPA conference "New Trends in Parameter Identification for Mathematical Models", Rio de Janeiro, Oct 30 - Nov 3, 2017, integrating the "Chemnitz Symposium on Inverse Problems on Tour". This conference is part of the "...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Birkhäuser,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | Trends in Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Posterior contraction in Bayesian inverse problems under Gaussian priors
- Convex regularization of discrete-valued inverse problems
- Algebraic reconstruction of source and attenuation in SPECT using first scattering measurements
- On l1-regularization under continuity of the forward operator in weaker topologies
- On self-regularization of ill-posed problems in Banach spaces by projection methods
- Monotonicity-based regularization for phantom experiment data in electrical impedance tomography
- An SVD in Spherical Surface Wave Tomography
- Numerical Studies of Recovery Chances for a Simplified EIT Problem
- Bayesian updating in the determination of forces in Euler-Bernoulli beams
- On nonstationary iterated Tikhonov methods for ill posed equation in Banach spaces
- The product midpoint rule for Abel-type integral equations of the first kind with perturbed data
- Heuristic parameter choice in Tikhonov method form minimizers of the quasi-optimality function
- Modification of Iterative Tikhonov Regularization Motivated by a Problem of Identification of Laser Beam Quality Parameters
- Tomographic terahertz imaging using sequential subspace optimization
- Adaptivity and Oracle Inequalities in Linear Statistical Inverse Problems: a (numerical) survey
- Relaxing Alternating Direction Method of Multipliers (ADMM) algorithm for linear inverse problems.