Mathematical Foundations of Computational Electromagnetism

This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Assous, Franck (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Ciarlet, Patrick (http://id.loc.gov/vocabulary/relators/aut), Labrunie, Simon (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Applied Mathematical Sciences, 198
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Foreword
  • Physical framework and models
  • Electromagnetic fields and Maxwell's equations
  • Stationary equations
  • Coupling with other models
  • Approximate models
  • Elements of mathematical classifications
  • Boundary conditions and radiation conditions
  • Energy matters
  • Bibliographical notes
  • Basic applied functional analysis
  • Function spaces for scalar fields
  • Vector fields: standard function spaces
  • Practical function spaces in the (t, x) variable
  • Complements of applied functional analysis
  • Vector fields: tangential trace revisited
  • Scalar and vector potentials: the analyst's and topologist's points of view
  • Extraction of scalar potentials and consequences
  • Extraction of vector potentials
  • Extraction of vector potentials - Vanishing normal trace
  • Extraction of vector potentials - Complements
  • Helmholtz decompositions
  • Abstract mathematical framework
  • Basic Results
  • Static problems
  • Time-dependent problems
  • Time-dependent problems: improved regularity results
  • Time-harmonic problems
  • Summing up
  • Analyses of exact problems: first-order models
  • Energy matters: uniqueness of the fields
  • Well-posedness
  • Analyses of approximate models
  • Electrostatic problem
  • Magnetostatic problem
  • Further comments around static problems
  • Other approximate models
  • Analyses of exact problems: second-order models
  • First-order to second-order equations
  • Well-posedness of the second-order Maxwell equations
  • Second-order to first-order equations
  • Other variational formulations
  • Compact imbeddings
  • Improved regularity for augmented and mixed augmented formulations
  • Analyses of time-harmonic problems
  • Compact imbeddings: complements
  • Free vibrations in a domain encased in a cavity
  • Sustained vibrations
  • Interface problem between a dielectric and a Lorentz material
  • Comments
  • Dimensionally reduced models: derivation and analyses
  • Two-and-a-half dimensional (2 1/2 2D) models
  • Two-dimensional (2D) models
  • Some results of functional analysis
  • Existence and uniqueness results (2D problems)
  • Analyses of coupled models
  • The Vlasov-Maxwell and Vlasov-Poisson systems
  • Magnetohydrodynamics
  • References
  • Index of function spaces
  • Basic Spaces
  • Electromagnetic spaces
  • Dimension reduction and weighted spaces
  • Spaces measuring time regularity
  • List of Figures
  • Index.