Predictive Econometrics and Big Data

This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques - which d...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kreinovich, Vladik (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Sriboonchitta, Songsak (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Chakpitak, Nopasit (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Studies in Computational Intelligence, 753
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04062nam a2200529 4500
001 978-3-319-70942-0
003 DE-He213
005 20191022054022.0
007 cr nn 008mamaa
008 171201s2018 gw | s |||| 0|eng d
020 |a 9783319709420  |9 978-3-319-70942-0 
024 7 |a 10.1007/978-3-319-70942-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Predictive Econometrics and Big Data  |h [electronic resource] /  |c edited by Vladik Kreinovich, Songsak Sriboonchitta, Nopasit Chakpitak. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 780 p. 146 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 753 
505 0 |a Data in the 21st Century -- The Understanding of Dependent Structure and Co-Movement of World Stock Exchanges Under the Economic Cycle -- Macro-Econometric Forecasting for During Periods of Economic Cycle Using Bayesian Extreme Value Optimization Algorithm -- Generalize Weighted in Interval Data for Fitting a Vector Autoregressive Model -- Asymmetric Effect with Quantile Regression for Interval-valued Variables -- Emissions, Trade Openness, Urbanisation, and Income in Thailand: An Empirical Analysis -- Does Forecasting Benefit from Mixed-Frequency Data Sampling Model: The Evidence from Forecasting GDP Growth Using Financial Factor in Thailand -- How Better Are Predictive Models: Analysis on the Practically Important Example of Robust Interval Uncertainty. 
520 |a This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques - which directly aim at predicting economic phenomena; and big data techniques - which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Econometrics. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Econometrics.  |0 http://scigraph.springernature.com/things/product-market-codes/W29010 
700 1 |a Kreinovich, Vladik.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sriboonchitta, Songsak.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Chakpitak, Nopasit.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319709413 
776 0 8 |i Printed edition:  |z 9783319709437 
776 0 8 |i Printed edition:  |z 9783319890180 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 753 
856 4 0 |u https://doi.org/10.1007/978-3-319-70942-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)