Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I /

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ceci, Michelangelo (Επιμελητής έκδοσης), Hollmén, Jaakko (Επιμελητής έκδοσης), Todorovski, Ljupčo (Επιμελητής έκδοσης), Vens, Celine (Επιμελητής έκδοσης), Džeroski, Sašo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Computer Science, 10534
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06947nam a22006135i 4500
001 978-3-319-71249-9
003 DE-He213
005 20180116031442.0
007 cr nn 008mamaa
008 171229s2017 gw | s |||| 0|eng d
020 |a 9783319712499  |9 978-3-319-71249-9 
024 7 |a 10.1007/978-3-319-71249-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Machine Learning and Knowledge Discovery in Databases  |h [electronic resource] :  |b European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I /  |c edited by Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski, Celine Vens, Sašo Džeroski. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a LXIII, 852 p. 245 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10534 
505 0 |a Anomaly Detection -- Concentration Free Outlier Detection -- Efficient top rank optimization with gradient boosting for supervised anomaly detection -- Robust, Deep and Inductive Anomaly Detection -- Sentiment Informed Cyberbullying Detection in Social Media -- zooRank: Ranking Suspicious Activities in Time-Evolving Tensors -- Computer Vision -- Alternative Semantic Representations for Zero-Shot Human Action Recognition -- Early Active Learning with Pairwise Constraint for Person Re-identification -- Guiding InfoGAN with Semi-Supervision -- Scatteract: Automated extraction of data from scatter plots -- Unsupervised Diverse Colorization via Generative Adversarial Networks -- Ensembles and Meta Learning -- Dynamic Ensemble Selection with Probabilistic Classifier Chains -- Ensemble-Compression: A New Method for Parallel Training of Deep Neural Networks -- Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks -- Feature Selection and Extraction -- Deep Discrete Hashing with Self-supervised Labels -- Including multi-feature interactions and redundancy for feature ranking in mixed datasets -- Non-redundant Spectral Dimensionality Reduction -- Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-links -- SetExpan: Corpus-based Set Expansion via Context Feature Selection and Rank Ensemble -- Kernel Methods -- Bayesian Nonlinear Support Vector Machines for Big Data -- Entropic Trace Estimation for Log Determinants -- Fair Kernel Learning -- GaKCo: a Fast Gapped k-mer string Kernel using Counting -- Graph Enhanced Memory Networks for Sentiment Analysis -- Kernel Sequential Monte Carlo -- Learning Lukasiewicz Logic Fragments by Quadratic Programming -- Nystrom sketching -- Learning and Optimization -- Crossprop: learning representations by stochastic meta-gradient descent in neural networks -- Distributed Stochastic Optimization of the Regularized Risk via Saddle-point Problem -- Speeding up Hyper-parameter Optimization by Extrapolation of Learning Curves using Previous Builds -- Matrix and Tensor Factorization -- Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation -- Content-Based Social Recommendation with Poisson Matrix Factorization -- C-SALT: Mining Class-Speci_c ALTerations in Boolean Matrix Factorization -- Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition -- Structurally Regularized Non-negative Tensor Factorization for Spatio-temporal Pattern Discoveries -- Networks and Graphs -- Attributed Graph Clustering with Unimodal Normalized Cut -- K-clique-graphs for Dense Subgraph Discovery -- Learning and Scaling Directed Networks via Graph Embedding -- Local Lanczos Spectral Approximation for Membership Identification -- Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms -- Survival Factorization for Topical Cascades on Diffusion Networks -- The network-untangling problem: From interactions to activity timelines.-TransT: Type-based Multiple Embedding Representations for Knowledge Graph Completion -- Neural Networks and Deep Learning -- A network Architecture for Multi-multi Instance Learning -- CON-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec -- Deep Over-sampling Framework for Classifying Imbalanced Data -- FCNNs: Fourier Convolutional Neural Networks -- Joint User Modeling across Aligned Heterogeneous Sites using Neural Networks -- Sequence Generation with Target Attention -- Wikipedia Vandal Early Detection: from User Behavior to User Embedding. . 
520 |a The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track. 
650 0 |a Computer science. 
650 0 |a Computer security. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Computers. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Systems and Data Security. 
650 2 4 |a Computing Milieux. 
700 1 |a Ceci, Michelangelo.  |e editor. 
700 1 |a Hollmén, Jaakko.  |e editor. 
700 1 |a Todorovski, Ljupčo.  |e editor. 
700 1 |a Vens, Celine.  |e editor. 
700 1 |a Džeroski, Sašo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319712482 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 10534 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-71249-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)