Numerical Ecology with R

This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Borcard, Daniel (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Gillet, François (http://id.loc.gov/vocabulary/relators/aut), Legendre, Pierre (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Use R!,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04944nam a2200517 4500
001 978-3-319-71404-2
003 DE-He213
005 20191025211557.0
007 cr nn 008mamaa
008 180319s2018 gw | s |||| 0|eng d
020 |a 9783319714042  |9 978-3-319-71404-2 
024 7 |a 10.1007/978-3-319-71404-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Borcard, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Ecology with R  |h [electronic resource] /  |c by Daniel Borcard, François Gillet, Pierre Legendre. 
250 |a 2nd ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 435 p. 657 illus., 633 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R!,  |x 2197-5736 
505 0 |a Chapter 1. Introduction -- Chapter 2. Exploratory Data Analysis -- Chapter 3. Association Measures and Matrices -- Chapter 4. Cluster Analysis -- Chapter 5. Unconstrained Ordination -- Chapter 6. Canonical Ordination -- Chapter 7. Spatial Analysis of Ecological Data -- Chapter 8. Community Diversity. 
520 |a This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary multivariate ecological analysis. The second edition of this book features a complete revision to the R code and offers improved procedures and more diverse applications of the major methods. It also highlights important changes in the methods and expands upon topics such as multiple correspondence analysis, principal response curves and co-correspondence analysis. New features include the study of relationships between species traits and the environment, and community diversity analysis. This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book. Users are invited to use this book as a teaching companion at the computer. All the necessary data files, the scripts used in the chapters, as well as extra R functions and packages written by the authors of the book, are available online (URL: http://adn.biol.umontreal.ca/~numericalecology/numecolR/). 
650 0 |a Statistics . 
650 0 |a Ecology . 
650 0 |a Environmental sciences. 
650 1 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Theoretical Ecology/Statistics.  |0 http://scigraph.springernature.com/things/product-market-codes/L19147 
650 2 4 |a Math. Appl. in Environmental Science.  |0 http://scigraph.springernature.com/things/product-market-codes/U24005 
700 1 |a Gillet, François.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Legendre, Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319714035 
776 0 8 |i Printed edition:  |z 9783319714059 
830 0 |a Use R!,  |x 2197-5736 
856 4 0 |u https://doi.org/10.1007/978-3-319-71404-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)