Automatic Tuning of Compilers Using Machine Learning

This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ashouri, Amir H. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Palermo, Gianluca (http://id.loc.gov/vocabulary/relators/aut), Cavazos, John (http://id.loc.gov/vocabulary/relators/aut), Silvano, Cristina (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:PoliMI SpringerBriefs,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Background
  • DSE Approach for Compiler Passes
  • Addressing the Selection Problem of Passes using ML
  • Intermediate Speedup Prediction for the Phase-ordering Problem
  • Full-sequence Speedup Prediction for the Phase-ordering Problem
  • Concluding Remarks. .