The Symbolic Computation of Integrability Structures for Partial Differential Equations

This is the first book devoted to the task of computing integrability structures by computer. The symbolic computation of integrability operator is a computationally hard problem and the book covers a huge number of situations through tutorials. The mathematical part of the book is a new approach to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Krasil'shchik, Joseph (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Verbovetsky, Alexander (http://id.loc.gov/vocabulary/relators/aut), Vitolo, Raffaele (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Έκδοση:1st ed. 2017.
Σειρά:Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Computational problems in the geometry of PDEs
  • Old and new Reduce software for integrability of PDEs
  • Internal coordinates and total derivatives
  • Conservation laws and nonlocal variables
  • Cosymmetries
  • Symmetries
  • The tangent covering
  • Recursion operators for symmetries
  • Variational symplectic structures
  • Cotangent covering
  • Variational Poisson structures
  • Recursion operators for cosymmetries
  • The Plebanski equation
  • Discussion.