S.M.A.R.T. Circle Minicourses

This book describes mini-courses in a Mathematical "Circle," i.e., an organization that discovers and nurtures young mathematical talents through meaningful extra-curricular activities. This is the third volume in a trilogy describing in particular the S.M.A.R.T. Circle project, which was...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Liu, Andrew Chiang-Fung (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Texts in Education,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04072nam a2200457 4500
001 978-3-319-71743-2
003 DE-He213
005 20191029011648.0
007 cr nn 008mamaa
008 171230s2018 gw | s |||| 0|eng d
020 |a 9783319717432  |9 978-3-319-71743-2 
024 7 |a 10.1007/978-3-319-71743-2  |2 doi 
040 |d GrThAP 
050 4 |a LC8-6691 
072 7 |a JNU  |2 bicssc 
072 7 |a EDU029010  |2 bisacsh 
072 7 |a JNU  |2 thema 
072 7 |a PB  |2 thema 
082 0 4 |a 370  |2 23 
100 1 |a Liu, Andrew Chiang-Fung.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a S.M.A.R.T. Circle Minicourses  |h [electronic resource] /  |c by Andrew Chiang-Fung Liu. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 244 p. 173 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Education,  |x 2366-7672 
505 0 |a Preface -- Acknowledgement -- Table of Contents -- Part I. Geometric Topics -- Chapter 1. Area and Dissection -- Section 1. Qualitative and Quantitative Treatments of Area -- Section 2. The Bolyai-Gerwin Theorem and Pythagoras' Theorem -- Section 3. Dissection Problems -- Chapter 2. Projective Geometry -- Section 1. Synthetic Approach -- Section 2. Metric Approach -- Section 3. Analytic Approach -- Chapter 3. Conic Sections -- Section 1. Loci -- Section 2. The Parabola -- Section 3. Ellipses and Hyperbolas -- Chapter 4. Inversive Geometry -- Section 1. Inversion -- Section 2. Applications to Euclidean Geometry -- Section 3. Mohr-Mascheroni Constructions -- Chapter 5. Convexity -- Section 1. Figures -- Section 2. Convex Figures -- Section 3. Figures of Constant Width -- Part II. Other Topics -- Chapter 6. Balancing Problems -- Section 1. Identifying Fake Coins -- Section 2. Other Problems -- Section 3. Other Balances -- Chapter 7. Graph Theory -- Section 1. Basic Concepts -- Section 2. Trees -- Section 3. Directed Graphs -- Chapter 8. Beanstalks -- Section 1. Red and Blue Beanstalks -- Section 2. Infinite Beanstalks -- Section 3. Beansprouts -- Chapter 9. Inequalities -- Section 1. The Rearrangement Inequality -- Section 2. The Majorization Inequality -- Section 3. Trigonometric Inequalities -- Chapter 10. Polynomial Equations -- Section 1. Complex Numbers -- Section 2. Cubic Equations -- Section 3. Quartic Equations. 
520 |a This book describes mini-courses in a Mathematical "Circle," i.e., an organization that discovers and nurtures young mathematical talents through meaningful extra-curricular activities. This is the third volume in a trilogy describing in particular the S.M.A.R.T. Circle project, which was founded in Edmonton, Canada in 1981. The acronym S.M.A.R.T. stands for Saturday Mathematical Activities, Recreations & Tutorials. This book, Volume III, consists of mini-courses and explains what actually takes place in the Circle. Volume I describes how to run a Circle, and Volume II, consisting of student projects, addresses the purpose of the Circle. All three volumes provide a wealth of resources (mathematical problems, quizzes and games, together with their solutions). The books will be of interest to self-motivated students who want to conduct independent research, teachers who work with these students, and teachers who are currently running or planning to run Mathematical Circles of their own. 
650 0 |a Mathematics-Study and teaching . 
650 1 4 |a Mathematics Education.  |0 http://scigraph.springernature.com/things/product-market-codes/O25000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319717425 
776 0 8 |i Printed edition:  |z 9783319717449 
830 0 |a Springer Texts in Education,  |x 2366-7672 
856 4 0 |u https://doi.org/10.1007/978-3-319-71743-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-EDA 
950 |a Education (Springer-41171)