Dynamic Neuroscience Statistics, Modeling, and Control /

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Chen, Zhe (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Sarma, Sridevi V. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04917nam a2200613 4500
001 978-3-319-71976-4
003 DE-He213
005 20191021213618.0
007 cr nn 008mamaa
008 171228s2018 gw | s |||| 0|eng d
020 |a 9783319719764  |9 978-3-319-71976-4 
024 7 |a 10.1007/978-3-319-71976-4  |2 doi 
040 |d GrThAP 
050 4 |a R856-857 
050 4 |a HC79.E5 
050 4 |a GE220 
072 7 |a MQW  |2 bicssc 
072 7 |a TEC059000  |2 bisacsh 
072 7 |a MQW  |2 thema 
082 0 4 |a 610.28  |2 23 
245 1 0 |a Dynamic Neuroscience  |h [electronic resource] :  |b Statistics, Modeling, and Control /  |c edited by Zhe Chen, Sridevi V. Sarma. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXI, 327 p. 80 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Part I Statistics & Signal Processing -- Characterizing Complex, Multi-scale Neural Phenomena Using State-Space Models -- Latent Variable Modeling of Neural Population Dynamics -- What Can Trial-to-Trial Variability Tell Us? A Distribution-Based Approach to Spike Train Decoding in the Rat Hippocampus and Entorhinal Cortex -- Sparsity Meets Dynamics: Robust Solutions to Neuronal Identification and Inverse Problems -- Artifact Rejection for Concurrent TMS-EEG Data -- Part II Modeling & Control Theory -- Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Models -- Brain-Machine Interfaces -- Control-theoretic Approaches for Modeling, Analyzing and Manipulating Neuronal (In)activity -- From Physiological Signals to Pulsatile Dynamics: A Sparse System Identification Approach -- Neural Engine Hypothesis -- Inferring Neuronal Network Mechanisms Underlying Anesthesia induced Oscillations Using Mathematical Models -- Epilogue. 
520 |a This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers. Presents innovative methodological and algorithmic development in statistics, modeling, control, and signal processing for neural data analysis; Includes a coherent framework for a broad class of neural signal processing and control problems in neuroscience; Covers a wide range of representative case studies in neuroscience applications. 
650 0 |a Biomedical engineering. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Bioinformatics. 
650 0 |a Neurosciences. 
650 0 |a Statistics . 
650 0 |a Neural networks (Computer science) . 
650 1 4 |a Biomedical Engineering and Bioengineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T2700X 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Computational Biology/Bioinformatics.  |0 http://scigraph.springernature.com/things/product-market-codes/I23050 
650 2 4 |a Neurosciences.  |0 http://scigraph.springernature.com/things/product-market-codes/B18006 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/M13100 
700 1 |a Chen, Zhe.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sarma, Sridevi V.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319719757 
776 0 8 |i Printed edition:  |z 9783319719771 
776 0 8 |i Printed edition:  |z 9783030101398 
856 4 0 |u https://doi.org/10.1007/978-3-319-71976-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)