Open Conformal Systems and Perturbations of Transfer Operators

The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pollicott, Mark (Συγγραφέας), Urbański, Mariusz (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Lecture Notes in Mathematics, 2206
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03463nam a22005775i 4500
001 978-3-319-72179-8
003 DE-He213
005 20180206192915.0
007 cr nn 008mamaa
008 180206s2017 gw | s |||| 0|eng d
020 |a 9783319721798  |9 978-3-319-72179-8 
024 7 |a 10.1007/978-3-319-72179-8  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Pollicott, Mark.  |e author. 
245 1 0 |a Open Conformal Systems and Perturbations of Transfer Operators  |h [electronic resource] /  |c by Mark Pollicott, Mariusz Urbański. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 204 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2206 
505 0 |a 1. Introduction -- 2. Singular Perturbations of Classical Original Perron–Frobenius Operators on Countable Alphabet Symbol Spaces -- 3. Symbol Escape Rates and the Survivor Set K(Un) -- 4. Escape Rates for Conformal GDMSs and IFSs -- 5. Applications: Escape Rates for Multimodal Maps and One-Dimensional Complex Dynamics. 
520 |a The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, meromorphic maps and rational functions. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite type and Hölder continuous summable potentials. This leads to a fairly full account of the structure of the corresponding open dynamical systems and their associated surviving sets. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Measure theory. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Operator Theory. 
650 2 4 |a Measure and Integration. 
700 1 |a Urbański, Mariusz.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319721781 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2206 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-72179-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)