Galois Theory Through Exercises

This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois' the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Brzeziński, Juliusz (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04140nam a2200601 4500
001 978-3-319-72326-6
003 DE-He213
005 20191026072237.0
007 cr nn 008mamaa
008 180321s2018 gw | s |||| 0|eng d
020 |a 9783319723266  |9 978-3-319-72326-6 
024 7 |a 10.1007/978-3-319-72326-6  |2 doi 
040 |d GrThAP 
050 4 |a QA247-247.45 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.3  |2 23 
100 1 |a Brzeziński, Juliusz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Galois Theory Through Exercises  |h [electronic resource] /  |c by Juliusz Brzeziński. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 293 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a 1 Solving algebraic equations -- 2 Field extensions -- 3 Polynomials and irreducibility -- 4 Algebraic extensions -- 5 Splitting fields -- 6 Automorphism groups of fields -- 7 Normal extensions -- 8 Separable extensions -- 9 Galois extensions -- 10 Cyclotomic extensions -- 11 Galois modules -- 12 Solvable groups -- 13 Solvability of equations -- 14 Geometric constructions -- 15 Computing Galois groups -- 16 Supplementary problems -- 17 Proofs of the theorems -- 18 Hints and answers -- 19 Examples and selected solutions -- Appendix: Groups, rings and fields -- References -- List of notations -- Index. 
520 |a This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois' theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 1 4 |a Field Theory and Polynomials.  |0 http://scigraph.springernature.com/things/product-market-codes/M11051 
650 2 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Associative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11027 
650 2 4 |a Commutative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11043 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319723259 
776 0 8 |i Printed edition:  |z 9783319723273 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u https://doi.org/10.1007/978-3-319-72326-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)