Redescription Mining

This book provides a gentle introduction to redescription mining, a versatile data mining tool that is useful to find distinct common characterizations of the same objects and, vice versa, to identify sets of objects that admit multiple shared descriptions. It is intended for readers who are familia...

Full description

Bibliographic Details
Main Authors: Galbrun, Esther (Author), Miettinen, Pauli (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Series:SpringerBriefs in Computer Science,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02460nam a22004455i 4500
001 978-3-319-72889-6
003 DE-He213
005 20180111115145.0
007 cr nn 008mamaa
008 180111s2017 gw | s |||| 0|eng d
020 |a 9783319728896  |9 978-3-319-72889-6 
024 7 |a 10.1007/978-3-319-72889-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Galbrun, Esther.  |e author. 
245 1 0 |a Redescription Mining  |h [electronic resource] /  |c by Esther Galbrun, Pauli Miettinen. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 80 p. 18 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
520 |a This book provides a gentle introduction to redescription mining, a versatile data mining tool that is useful to find distinct common characterizations of the same objects and, vice versa, to identify sets of objects that admit multiple shared descriptions. It is intended for readers who are familiar with basic data analysis techniques such as clustering, frequent itemset mining, and classification. Redescription mining is defined in a general way, making it applicable to different types of data. The general framework is made more concrete through many practical examples that show the versatility of redescription mining. The book also introduces the main algorithmic ideas for mining redescriptions, together with applications from various domains. The final part of the book contains variations and extensions of the basic redescription mining problem, and discusses some future directions and open questions. . 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Miettinen, Pauli.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319728889 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-72889-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)