Visual Knowledge Discovery and Machine Learning

This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual repres...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kovalerchuk, Boris (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Intelligent Systems Reference Library, 144
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02833nam a2200469 4500
001 978-3-319-73040-0
003 DE-He213
005 20191021181558.0
007 cr nn 008mamaa
008 180118s2018 gw | s |||| 0|eng d
020 |a 9783319730400  |9 978-3-319-73040-0 
024 7 |a 10.1007/978-3-319-73040-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Kovalerchuk, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Visual Knowledge Discovery and Machine Learning  |h [electronic resource] /  |c by Boris Kovalerchuk. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXI, 317 p. 274 illus., 263 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 144 
520 |a This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319730394 
776 0 8 |i Printed edition:  |z 9783319730417 
776 0 8 |i Printed edition:  |z 9783319892306 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 144 
856 4 0 |u https://doi.org/10.1007/978-3-319-73040-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)