Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques

This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, ear...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pourghasemi, Hamid Reza (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Rossi, Mauro (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:Advances in Natural and Technological Hazards Research, 48
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04745nam a2200481 4500
001 978-3-319-73383-8
003 DE-He213
005 20191026021801.0
007 cr nn 008mamaa
008 181212s2019 gw | s |||| 0|eng d
020 |a 9783319733838  |9 978-3-319-73383-8 
024 7 |a 10.1007/978-3-319-73383-8  |2 doi 
040 |d GrThAP 
050 4 |a GB5000-5030 
072 7 |a RNR  |2 bicssc 
072 7 |a NAT023000  |2 bisacsh 
072 7 |a RNR  |2 thema 
082 0 4 |a 551  |2 23 
245 1 0 |a Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques  |h [electronic resource] /  |c edited by Hamid Reza Pourghasemi, Mauro Rossi. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XXII, 296 p. 146 illus., 131 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Natural and Technological Hazards Research,  |x 1878-9897 ;  |v 48 
505 0 |a Gully erosion modeling using GIS-based data mining techniques in Northern Iran; a comparison between boosted regression tree and multivariate adaptive regression spline -- Concepts for Improving Machine Learning Based Landslide Assessment -- Multi-hazard assessment modeling using multi-criteria analysis and GIS: a case study -- Assessment of the contribution of geo-environmental factors to flood inundation in a semi-arid region of SW Iran: comparison of different advanced modeling approaches -- Land Subsidence modelling using data mining techniques. The case study of Western Thessaly, Greece -- Application of fuzzy analytical network process model for analyzing the gully erosion susceptibility -- Landslide susceptibility prediction maps: from blind-testing to uncertainty of class membership: a review of past and present developments -- Earthquake events modeling using multi-criteria decision analysis in Iran -- Prediction of Rainfall as One of the Main Variables in Several Natural Disasters -- Landslide Inventory, Sampling & Effect of Sampling Strategies on Landslide Susceptibility/Hazard Modelling at a Glance -- GIS-based landslide susceptibility evaluation using certainty factor and index of entropy ensembled with alternating decision tree models -- Evaluation of Sentinel-2 MSI and Pleiades 1B imagery in forest fire susceptibility assessment in temperate regions of Central and Eastern Europe. A case study of Romania -- Monitoring and Management of Land Subsidence induced by over-exploitation of groundwater -- A VEGETATED VARIATION MODEL FOR THE FLOODPLAIN OF LOWER MEKONG DELTA DERIVED FROM MULTI-TEMPORAL ERS-2 AND SENTINEL-1 DATA. 
520 |a This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, earthquake, and gully erosion. Chapters were peer-reviewed by recognized scholars in the field of natural hazards research. Each chapter provides an overview on the topic, methods applied, and discusses examples used. The concepts and methods are explained at a level that allows undergraduates to understand and other readers learn through examples. This edited volume is shaped and structured to provide the reader with a comprehensive overview of all covered topics. It serves as a reference for researchers from different fields including land surveying, remote sensing, cartography, GIS, geophysics, geology, natural resources, and geography. It also serves as a guide for researchers, students, organizations, and decision makers active in land use planning and hazard management. 
650 0 |a Natural disasters. 
650 0 |a Data mining. 
650 1 4 |a Natural Hazards.  |0 http://scigraph.springernature.com/things/product-market-codes/G32000 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 http://scigraph.springernature.com/things/product-market-codes/I18030 
700 1 |a Pourghasemi, Hamid Reza.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rossi, Mauro.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319733821 
776 0 8 |i Printed edition:  |z 9783319733845 
830 0 |a Advances in Natural and Technological Hazards Research,  |x 1878-9897 ;  |v 48 
856 4 0 |u https://doi.org/10.1007/978-3-319-73383-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646)