Image Quality Assessment of Computer-generated Images Based on Machine Learning and Soft Computing /

Image Quality Assessment is well-known for measuring the perceived image degradation of natural scene images but is still an emerging topic for computer-generated images. This book addresses this problem and presents recent advances based on soft computing. It is aimed at students, practitioners and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bigand, André (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Dehos, Julien (http://id.loc.gov/vocabulary/relators/aut), Renaud, Christophe (http://id.loc.gov/vocabulary/relators/aut), Constantin, Joseph (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04068nam a2200505 4500
001 978-3-319-73543-6
003 DE-He213
005 20191021203229.0
007 cr nn 008mamaa
008 180309s2018 gw | s |||| 0|eng d
020 |a 9783319735436  |9 978-3-319-73543-6 
024 7 |a 10.1007/978-3-319-73543-6  |2 doi 
040 |d GrThAP 
050 4 |a TA1630-1650 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
100 1 |a Bigand, André.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Image Quality Assessment of Computer-generated Images  |h [electronic resource] :  |b Based on Machine Learning and Soft Computing /  |c by André Bigand, Julien Dehos, Christophe Renaud, Joseph Constantin. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 88 p. 45 illus., 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Monte-Carlo Methods for Image Synthesis -- Visual Impact of Rendering on Image Quality -- Full-reference Methods and Machine Learning -- No-reference Methods and Fuzzy Sets -- Reduced-reference Methods -- Conclusion. 
520 |a Image Quality Assessment is well-known for measuring the perceived image degradation of natural scene images but is still an emerging topic for computer-generated images. This book addresses this problem and presents recent advances based on soft computing. It is aimed at students, practitioners and researchers in the field of image processing and related areas such as computer graphics and visualization. In this book, we first clarify the differences between natural scene images and computer-generated images, and address the problem of Image Quality Assessment (IQA) by focusing on the visual perception of noise. Rather than using known perceptual models, we first investigate the use of soft computing approaches, classically used in Artificial Intelligence, as full-reference and reduced-reference metrics. Thus, by creating Learning Machines, such as SVMs and RVMs, we can assess the perceptual quality of a computer-generated image. We also investigate the use of interval-valued fuzzy sets as a no-reference metric. These approaches are treated both theoretically and practically, for the complete process of IQA. The learning step is performed using a database built from experiments with human users and the resulting models can be used for any image computed with a stochastic rendering algorithm. This can be useful for detecting the visual convergence of the different parts of an image during the rendering process, and thus to optimize the computation. These models can also be extended to other applications that handle complex models, in the fields of signal processing and image processing. 
650 0 |a Optical data processing. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 http://scigraph.springernature.com/things/product-market-codes/I22005 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
700 1 |a Dehos, Julien.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Renaud, Christophe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Constantin, Joseph.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319735429 
776 0 8 |i Printed edition:  |z 9783319735443 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-319-73543-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)