Modeling and Simulation in HPC and Cloud Systems

This book consists of eight chapters, five of which provide a summary of the tutorials and workshops organised as part of the cHiPSet Summer School: High-Performance Modelling and Simulation for Big Data Applications Cost Action on "New Trends in Modelling and Simulation in HPC Systems," w...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kołodziej, Joanna (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Pop, Florin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Dobre, Ciprian (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Studies in Big Data, 36
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04610nam a2200505 4500
001 978-3-319-73767-6
003 DE-He213
005 20191021172502.0
007 cr nn 008mamaa
008 180131s2018 gw | s |||| 0|eng d
020 |a 9783319737676  |9 978-3-319-73767-6 
024 7 |a 10.1007/978-3-319-73767-6  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Modeling and Simulation in HPC and Cloud Systems  |h [electronic resource] /  |c edited by Joanna Kołodziej, Florin Pop, Ciprian Dobre. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XX, 155 p. 35 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 36 
505 0 |a Evaluating Distributed Systems and Applications through Accurate Models and Simulations -- Scheduling Data-Intensive Workloads in Large-Scale Distributed Systems: Trends and Challenges -- Design Patterns and Algorithmic Skeletons: A Brief Concordance -- Evaluation of Cloud Systems -- Science Gateways in HPC: Usability meets Efficiency and Effectiveness -- MobEmu: A Framework to Support Decentralized Ad-Hoc Networking -- Virtualisation Model For Processing of the Sensitive Mobile Data -- Analysis of selected cryptographic services for processing batch tasks in Cloud Computing systems. 
520 |a This book consists of eight chapters, five of which provide a summary of the tutorials and workshops organised as part of the cHiPSet Summer School: High-Performance Modelling and Simulation for Big Data Applications Cost Action on "New Trends in Modelling and Simulation in HPC Systems," which was held in Bucharest (Romania) on September 21-23, 2016. As such it offers a solid foundation for the development of new-generation data-intensive intelligent systems. Modelling and simulation (MS) in the big data era is widely considered the essential tool in science and engineering to substantiate the prediction and analysis of complex systems and natural phenomena. MS offers suitable abstractions to manage the complexity of analysing big data in various scientific and engineering domains. Unfortunately, big data problems are not always easily amenable to efficient MS over HPC (high performance computing). Further, MS communities may lack the detailed expertise required to exploit the full potential of HPC solutions, and HPC architects may not be fully aware of specific MS requirements. The main goal of the Summer School was to improve the participants' practical skills and knowledge of the novel HPC-driven models and technologies for big data applications. The trainers, who are also the authors of this book, explained how to design, construct, and utilise the complex MS tools that capture many of the HPC modelling needs, from scalability to fault tolerance and beyond. In the final three chapters, the book presents the first outcomes of the school: new ideas and novel results of the research on security aspects in clouds, first prototypes of the complex virtual models of data in big data streams and a data-intensive computing framework for opportunistic networks. It is a valuable reference resource for those wanting to start working in HPC and big data systems, as well as for advanced researchers and practitioners. . 
650 0 |a Computational intelligence. 
650 0 |a Big data. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Big Data.  |0 http://scigraph.springernature.com/things/product-market-codes/I29120 
700 1 |a Kołodziej, Joanna.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pop, Florin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dobre, Ciprian.  |e editor.  |0 (orcid)0000-0003-4638-7725  |1 https://orcid.org/0000-0003-4638-7725  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319737669 
776 0 8 |i Printed edition:  |z 9783319737683 
776 0 8 |i Printed edition:  |z 9783319892580 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 36 
856 4 0 |u https://doi.org/10.1007/978-3-319-73767-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)