New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic

In this book a new model for data classification was developed. This new model is based on the competitive neural network Learning Vector Quantization (LVQ) and type-2 fuzzy logic.  This computational model consists of the hybridization of the aforementioned techniques, using a fuzzy logic system wi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Amezcua, Jonathan (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Melin, Patricia (http://id.loc.gov/vocabulary/relators/aut), Castillo, Oscar (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Computational Intelligence,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03186nam a2200481 4500
001 978-3-319-73773-7
003 DE-He213
005 20191022102707.0
007 cr nn 008mamaa
008 180207s2018 gw | s |||| 0|eng d
020 |a 9783319737737  |9 978-3-319-73773-7 
024 7 |a 10.1007/978-3-319-73773-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Amezcua, Jonathan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic  |h [electronic resource] /  |c by Jonathan Amezcua, Patricia Melin, Oscar Castillo. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a VIII, 73 p. 22 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computational Intelligence,  |x 2625-3704 
520 |a In this book a new model for data classification was developed. This new model is based on the competitive neural network Learning Vector Quantization (LVQ) and type-2 fuzzy logic.  This computational model consists of the hybridization of the aforementioned techniques, using a fuzzy logic system within the competitive layer of the LVQ network to determine the shortest distance between a centroid and an input vector. This new model is based on a modular LVQ architecture to further improve its performance on complex classification problems. It also implements a data-similarity process for preprocessing the datasets, in order to build dynamic architectures, having the classes with the highest degree of similarity in different modules. Some architectures were developed in order to work mainly with two datasets, an arrhythmia dataset (using ECG signals) for classifying 15 different types of arrhythmias, and a satellite images segments dataset used for classifying six different types of soil. Both datasets show interesting features that makes them interesting for testing new classification methods.  . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
700 1 |a Melin, Patricia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Castillo, Oscar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319737720 
776 0 8 |i Printed edition:  |z 9783319737744 
830 0 |a SpringerBriefs in Computational Intelligence,  |x 2625-3704 
856 4 0 |u https://doi.org/10.1007/978-3-319-73773-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)