The Tower of Hanoi - Myths and Maths

The solitaire game "The Tower of Hanoi" was invented in the 19th century by the French number theorist Édouard Lucas. The book presents its mathematical theory and offers a survey of the historical development from predecessors up to recent research. In addition to long-standing myths, it...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hinz, Andreas M. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Klavžar, Sandi (http://id.loc.gov/vocabulary/relators/aut), Petr, Ciril (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2018.
Έκδοση:2nd ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05098nam a2200553 4500
001 978-3-319-73779-9
003 DE-He213
005 20191027022951.0
007 cr nn 008mamaa
008 180417s2018 gw | s |||| 0|eng d
020 |a 9783319737799  |9 978-3-319-73779-9 
024 7 |a 10.1007/978-3-319-73779-9  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Hinz, Andreas M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Tower of Hanoi - Myths and Maths  |h [electronic resource] /  |c by Andreas M. Hinz, Sandi Klavžar, Ciril Petr. 
250 |a 2nd ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2018. 
300 |a XVI, 452 p. 155 illus., 60 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Beginning of the World -- The Chinese Rings -- The Classical Tower of Hanoi -- Lucas's Second Problem -- Sierpinski Graphs -- The Tower of Hanoi with More Pegs -- Variations of the Puzzle -- The Tower of London -- Tower of Hanoi Variants with Restricted Disc Moves -- Hints, Solutions and Supplements to Exercises -- The End of the World. 
520 |a The solitaire game "The Tower of Hanoi" was invented in the 19th century by the French number theorist Édouard Lucas. The book presents its mathematical theory and offers a survey of the historical development from predecessors up to recent research. In addition to long-standing myths, it provides a detailed overview of the essential mathematical facts with complete proofs, and also includes unpublished material, e.g., on some captivating integer sequences. The main objects of research today are the so-called Hanoi graphs and the related Sierpiński graphs. Acknowledging the great popularity of the topic in computer science, algorithms, together with their correctness proofs, form an essential part of the book. In view of the most important practical applications, namely in physics, network theory and cognitive (neuro)psychology, the book also addresses other structures related to the Tower of Hanoi and its variants. The updated second edition includes, for the first time in English, the breakthrough reached with the solution of the "The Reve's Puzzle" in 2014. This is a special case of the famed Frame-Stewart conjecture which is still open after more than 75 years. Enriched with elaborate illustrations, connections to other puzzles and challenges for the reader in the form of (solved) exercises as well as problems for further exploration, this book is enjoyable reading for students, educators, game enthusiasts and researchers alike. Excerpts from reviews of the first edition: "The book is an unusual, but very welcome, form of mathematical writing: recreational mathematics taken seriously and serious mathematics treated historically. I don't hesitate to recommend this book to students, professional research mathematicians, teachers, and to readers of popular mathematics who enjoy more technical expository detail." Chris Sangwin, The Mathematical Intelligencer 37(4) (2015) 87f. "The book demonstrates that the Tower of Hanoi has a very rich mathematical structure, and as soon as we tweak the parameters we surprisingly quickly find ourselves in the realm of open problems." László Kozma, ACM SIGACT News 45(3) (2014) 34ff. "Each time I open the book I discover a renewed interest in the Tower of Hanoi. I am sure that this will be the case for all readers." Jean-Paul Allouche, Newsletter of the European Mathematical Society 93 (2014) 56. 
650 0 |a Mathematics. 
650 0 |a Sequences (Mathematics). 
650 0 |a Combinatorics. 
650 0 |a Game theory. 
650 0 |a Algorithms. 
650 1 4 |a Mathematics, general.  |0 http://scigraph.springernature.com/things/product-market-codes/M00009 
650 2 4 |a Sequences, Series, Summability.  |0 http://scigraph.springernature.com/things/product-market-codes/M1218X 
650 2 4 |a Combinatorics.  |0 http://scigraph.springernature.com/things/product-market-codes/M29010 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/M13011 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
700 1 |a Klavžar, Sandi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Petr, Ciril.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319737782 
776 0 8 |i Printed edition:  |z 9783319737805 
776 0 8 |i Printed edition:  |z 9783030088569 
856 4 0 |u https://doi.org/10.1007/978-3-319-73779-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)