Computational Diffusion MRI MICCAI Workshop, Québec, Canada, September 2017 /

This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kaden, Enrico (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Grussu, Francesco (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Ning, Lipeng (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Tax, Chantal M. W. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Veraart, Jelle (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Mathematics and Visualization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06205nam a2200613 4500
001 978-3-319-73839-0
003 DE-He213
005 20191029011720.0
007 cr nn 008mamaa
008 180402s2018 gw | s |||| 0|eng d
020 |a 9783319738390  |9 978-3-319-73839-0 
024 7 |a 10.1007/978-3-319-73839-0  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PDE  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PDE  |2 thema 
082 0 4 |a 570.285  |2 23 
245 1 0 |a Computational Diffusion MRI  |h [electronic resource] :  |b MICCAI Workshop, Québec, Canada, September 2017 /  |c edited by Enrico Kaden, Francesco Grussu, Lipeng Ning, Chantal M. W. Tax, Jelle Veraart. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XI, 245 p. 82 illus., 69 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Visualization,  |x 1612-3786 
505 0 |a Part I Data Acquisition and Modeling: Estimating Tissue Microstructure using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites by Marco Palombo -- (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior by Evan Schwab et al -- Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model by Patryk Filipiak et al -- A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation by Mauro Zucchelli et al -- Part II Image Postprocessing: Diffusion Specific Segmentation: Skull Stripping with Diffusion MRIData Alone by Robert I. Reid et al -- Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree by K´evin Ginsburger et al -- Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysis by Laurent Chauvin et al -- Part III Tractography and Connectivity: Learning a Single Step of Streamline Tractography Based on Neural Networks by Daniel Jörgens et al -- Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection by Edwin Versteeg et al -- Bundle-Specific Tractography by Francois Rheault et al -- A Sheet Probability Index from Diffusion Tensor Imaging by Michael Ankele et al -- Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion by Chendi Wang et al -- Brain Parcellation and Connectivity Mapping Using Wasserstein Geometry by Hamza Farooq et al -- Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features by Silvia Obertino et al -- Part IV Clinical Applications: Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players by Itay Benou et al -- Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis by Thalis Charalambous et al -- Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI by Kuldeep Kumar et al -- VERDICT Prostate Parameter Estimation with AMICO by Elisenda Bonet-Carne et al. 
520 |a This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics. 
650 0 |a Biomathematics. 
650 0 |a Statistics . 
650 0 |a Computer mathematics. 
650 0 |a Bioinformatics. 
650 0 |a Optical data processing. 
650 1 4 |a Mathematical and Computational Biology.  |0 http://scigraph.springernature.com/things/product-market-codes/M31000 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17030 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M1400X 
650 2 4 |a Computational Biology/Bioinformatics.  |0 http://scigraph.springernature.com/things/product-market-codes/I23050 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
700 1 |a Kaden, Enrico.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grussu, Francesco.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ning, Lipeng.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tax, Chantal M. W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Veraart, Jelle.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319738383 
776 0 8 |i Printed edition:  |z 9783319738406 
776 0 8 |i Printed edition:  |z 9783030088668 
830 0 |a Mathematics and Visualization,  |x 1612-3786 
856 4 0 |u https://doi.org/10.1007/978-3-319-73839-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)