Bridging the Semantic Gap in Image and Video Analysis

This book presents cutting-edge research on various ways to bridge the semantic gap in image and video analysis. The respective chapters address different stages of image processing, revealing that the first step is a future extraction, the second is a segmentation process, the third is object recog...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kwaśnicka, Halina (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Jain, Lakhmi C. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Intelligent Systems Reference Library, 145
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04217nam a2200589 4500
001 978-3-319-73891-8
003 DE-He213
005 20191029031905.0
007 cr nn 008mamaa
008 180220s2018 gw | s |||| 0|eng d
020 |a 9783319738918  |9 978-3-319-73891-8 
024 7 |a 10.1007/978-3-319-73891-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Bridging the Semantic Gap in Image and Video Analysis  |h [electronic resource] /  |c edited by Halina Kwaśnicka, Lakhmi C. Jain. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 163 p. 59 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 145 
505 0 |a Semantic Gap in Image and Video Analysis: An Introduction -- Low-Level Feature Detectors and Descriptors for Smart Image and Video Analysis: A Comparative Study -- Scale-insensitive MSER Features: A Promising Tool for Meaningful Segmentation of Images -- Active Partitions in Localization of Semantically Important Image Structures -- Model-based 3D Object recognition in RGB-D Images -- Ontology-Based Structured Video Annotation for Content-Based Video Retrieval via Spatiotemporal Reasoning -- Deep Learning - a New Era in Bridging the Semantic Gap. 
520 |a This book presents cutting-edge research on various ways to bridge the semantic gap in image and video analysis. The respective chapters address different stages of image processing, revealing that the first step is a future extraction, the second is a segmentation process, the third is object recognition, and the fourth and last involve the semantic interpretation of the image. The semantic gap is a challenging area of research, and describes the difference between low-level features extracted from the image and the high-level semantic meanings that people can derive from the image. The result greatly depends on lower level vision techniques, such as feature selection, segmentation, object recognition, and so on. The use of deep models has freed humans from manually selecting and extracting the set of features. Deep learning does this automatically, developing more abstract features at the successive levels. The book offers a valuable resource for researchers, practitioners, students and professors in Computer Engineering, Computer Science and related fields whose work involves images, video analysis, image interpretation and so on. 
650 0 |a Computational intelligence. 
650 0 |a Semantics. 
650 0 |a Artificial intelligence. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Optical data processing. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Semantics.  |0 http://scigraph.springernature.com/things/product-market-codes/N39000 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Image Processing and Computer Vision.  |0 http://scigraph.springernature.com/things/product-market-codes/I22021 
700 1 |a Kwaśnicka, Halina.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jain, Lakhmi C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319738901 
776 0 8 |i Printed edition:  |z 9783319738925 
776 0 8 |i Printed edition:  |z 9783030088798 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 145 
856 4 0 |u https://doi.org/10.1007/978-3-319-73891-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)