Unbounded Weighted Composition Operators in L²-Spaces

This book establishes the foundations of the theory of bounded and unbounded weighted composition operators in L²-spaces. It develops the theory in full generality, meaning that the weighted composition operators under consideration are not regarded as products of multiplication and composition oper...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Budzyński, Piotr (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Jabłoński, Zenon (http://id.loc.gov/vocabulary/relators/aut), Jung, Il Bong (http://id.loc.gov/vocabulary/relators/aut), Stochel, Jan (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Lecture Notes in Mathematics, 2209
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03515nam a2200541 4500
001 978-3-319-74039-3
003 DE-He213
005 20191026001009.0
007 cr nn 008mamaa
008 180528s2018 gw | s |||| 0|eng d
020 |a 9783319740393  |9 978-3-319-74039-3 
024 7 |a 10.1007/978-3-319-74039-3  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Budzyński, Piotr.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Unbounded Weighted Composition Operators in L²-Spaces  |h [electronic resource] /  |c by Piotr Budzyński, Zenon Jabłoński, Il Bong Jung, Jan Stochel. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 182 p. 7 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2209 
505 0 |a Chapter 1. Preliminaries -- Chapter 2. Preparatory Concepts -- Chapter 3. Subnormality - General Criteria -- Chapter 4. C∞-vectors -- Chapter 5. Seminormality -- Chapter 6. Discrete Measure Spaces -- Chapter 7. Relationships Between Cϕ;w and Cϕ -- Chapter 8. Miscellanea. 
520 |a This book establishes the foundations of the theory of bounded and unbounded weighted composition operators in L²-spaces. It develops the theory in full generality, meaning that the weighted composition operators under consideration are not regarded as products of multiplication and composition operators. A variety of seminormality properties are characterized and the first-ever criteria for subnormality of unbounded weighted composition operators is provided. The subtle interplay between the classical moment problem, graph theory and the injectivity problem is revealed and there is an investigation of the relationships between weighted composition operators and the corresponding multiplication and composition operators. The optimality of the obtained results is illustrated by a variety of examples, including those of discrete and continuous types. The book is primarily aimed at researchers in single or multivariable operator theory. 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 1 4 |a Operator Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12139 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
700 1 |a Jabłoński, Zenon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Jung, Il Bong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Stochel, Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319740386 
776 0 8 |i Printed edition:  |z 9783319740409 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2209 
856 4 0 |u https://doi.org/10.1007/978-3-319-74039-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)