Intuitionistic Proof Versus Classical Truth The Role of Brouwer's Creative Subject in Intuitionistic Mathematics /

This book examines the role of acts of choice in classical and intuitionistic mathematics. Featuring fifteen papers - both new and previously published - it offers a fresh analysis of concepts developed by the mathematician and philosopher L.E.J. Brouwer, the founder of intuitionism. The author expl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Martino, Enrico (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Logic, Epistemology, and the Unity of Science, 42
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04396nam a2200541 4500
001 978-3-319-74357-8
003 DE-He213
005 20191026071601.0
007 cr nn 008mamaa
008 180223s2018 gw | s |||| 0|eng d
020 |a 9783319743578  |9 978-3-319-74357-8 
024 7 |a 10.1007/978-3-319-74357-8  |2 doi 
040 |d GrThAP 
050 4 |a QA8-10.4 
072 7 |a PBB  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
072 7 |a PBB  |2 thema 
082 0 4 |a 510.1  |2 23 
100 1 |a Martino, Enrico.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Intuitionistic Proof Versus Classical Truth  |h [electronic resource] :  |b The Role of Brouwer's Creative Subject in Intuitionistic Mathematics /  |c by Enrico Martino. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 170 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Logic, Epistemology, and the Unity of Science,  |x 2214-9775 ;  |v 42 
505 0 |a Brouwer, Dummett and the bar theorem -- Creative subject and bar theorem -- Natural intuitionistic semantics and generalized Beth semantics -- Connection between the principle of inductive evidence and the bar theorem -- On the Brouwerian concept of negative continuity -- Classical and intuitionistic semantical groundedness -- Brouwer's equivalence between virtual and inextensible order -- An intuitionistic notion of hypothetical truth for which strong completeness intuitionistically holds -- Propositions and judgements in Martin-Löf -- Negationless Intuitionism -- Temporal and atemporal truth in intuitionistic mathematics -- Arbitrary reference in mathematical reasoning -- The priority of arithmetical truth over arithmetical provability -- The impredicativity of the intuitionistic meaning of logical constants -- The intuitionistic meaning of logical constants and fallible models. 
520 |a This book examines the role of acts of choice in classical and intuitionistic mathematics. Featuring fifteen papers - both new and previously published - it offers a fresh analysis of concepts developed by the mathematician and philosopher L.E.J. Brouwer, the founder of intuitionism. The author explores Brouwer's idealization of the creative subject as the basis for intuitionistic truth, and in the process he also discusses an important, related question: to what extent does the intuitionistic perspective succeed in avoiding the classical realistic notion of truth? The papers detail realistic aspects in the idealization of the creative subject and investigate the hidden role of choice even in classical logic and mathematics, covering such topics as bar theorem, type theory, inductive evidence, Beth models, fallible models, and more. In addition, the author offers a critical analysis of the response of key mathematicians and philosophers to Brouwer's work. These figures include Michael Dummett, Saul Kripke, Per Martin-Löf, and Arend Heyting. This book appeals to researchers and graduate students with an interest in philosophy of mathematics, linguistics, and mathematics. 
650 0 |a Mathematics-Philosophy. 
650 0 |a Mathematical logic. 
650 0 |a Philology. 
650 0 |a Logic. 
650 1 4 |a Philosophy of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/E34020 
650 2 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
650 2 4 |a Philology.  |0 http://scigraph.springernature.com/things/product-market-codes/N33000 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Logic.  |0 http://scigraph.springernature.com/things/product-market-codes/E16000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319743561 
776 0 8 |i Printed edition:  |z 9783319743585 
776 0 8 |i Printed edition:  |z 9783030089719 
830 0 |a Logic, Epistemology, and the Unity of Science,  |x 2214-9775 ;  |v 42 
856 4 0 |u https://doi.org/10.1007/978-3-319-74357-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-REP 
950 |a Religion and Philosophy (Springer-41175)