Deep Neural Networks in a Mathematical Framework
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algo...
Κύριοι συγγραφείς: | Caterini, Anthony L. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Chang, Dong Eui (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | SpringerBriefs in Computer Science,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Radial Basis Function Networks 2 New Advances in Design /
ανά: Howlett, Robert J., κ.ά.
Έκδοση: (2001) -
Machine Learning Paradigms: Theory and Application
Έκδοση: (2019) -
Recent Advances in Ensembles for Feature Selection
ανά: Bolón-Canedo, Verónica, κ.ά.
Έκδοση: (2018) -
Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016)
Έκδοση: (2018) -
Computational Intelligence for Pattern Recognition
Έκδοση: (2018)