Exercises and Problems in Mathematical Methods of Physics

This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cicogna, Giampaolo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Undergraduate Lecture Notes in Physics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05115nam a2200577 4500
001 978-3-319-76165-7
003 DE-He213
005 20191027081707.0
007 cr nn 008mamaa
008 180321s2018 gw | s |||| 0|eng d
020 |a 9783319761657  |9 978-3-319-76165-7 
024 7 |a 10.1007/978-3-319-76165-7  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Cicogna, Giampaolo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Exercises and Problems in Mathematical Methods of Physics  |h [electronic resource] /  |c by Giampaolo Cicogna. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 182 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
505 0 |a 1 Hilbert spaces -- 1.1 Complete sets, Fourier expansions -- 1.1.1 Preliminary notions. Subspaces. Complete sets -- 1.1.2 Fourier expansions -- 1.1.3 Harmonic functions; Dirichlet and Neumann Problems -- 1.2 Linear operators -- 1.2.1 Linear operators defined giving T en = vn, and related Problems -- 1.2.2 Operators of the form T x = v(w;x) and T x = ån vn(wn;x) -- 1.2.3 Operators of the form T f (x) = j(x) f (x) -- 1.2.4 Problems involving differential operators -- 1.2.5 Functionals -- 1.2.6 Time evolution Problems. Heat equation -- 1.2.7 Miscellaneous Problems -- 2 Functions of a complex variable -- 2.1 Basic properties of analytic functions -- 2.2 Evaluation of integrals by complex variable methods -- 2.3 Harmonic functions and conformal mappings -- 3 Fourier and Laplace transforms. Distributions -- 3.1 Fourier transform in L1(R) and L2(R) -- 3.1.1 Basic properties and applications -- 3.1.2 Fourier transform and linear operators in L2(R) -- 3.2 Tempered distributions and Fourier transforms -- 3.2.1 General properties -- 3.2.2 Fourier transform, distributions and linear operators -- 3.2.3 Applications to ODE's and related Green functions -- 3.2.4 Applications to general linear systems and Green functions -- 3.2.5 Applications to PDE's -- 3.3 Laplace transforms -- vvi Contents -- Groups, Lie algebras, symmetries in physics -- 4.1 Basic properties of groups and representations -- 4.2 Lie groups and algebras -- 4.3 The groups SO3; SU2; SU3 -- 4.4 Other direct applications of symmetries to physics -- Answers and Solutions. . 
520 |a This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order but rather in a sequence that maximizes their educational value. Each section and subsection starts with exercises based on first definitions, followed by groups of problems devoted to intermediate and, subsequently, more elaborate situations. Some of the problems are unavoidably "routine", but others bring to the forenontrivial properties that are often omitted or barely mentioned in textbooks. There are also problems where the reader is guided to obtain important results that are usually stated in textbooks without complete proofs. In all, some 350 solved problems covering all mathematical notions useful to physics are included. While the book is intended primarily for undergraduate students of physics, students of mathematics, chemistry, and engineering, as well as their teachers, will also find it of value. . 
650 0 |a Physics. 
650 0 |a Fourier analysis. 
650 0 |a Operator theory. 
650 0 |a Functions of complex variables. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Group theory. 
650 1 4 |a Mathematical Methods in Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19013 
650 2 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
650 2 4 |a Operator Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M12139 
650 2 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Integral Transforms, Operational Calculus.  |0 http://scigraph.springernature.com/things/product-market-codes/M12112 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319761640 
776 0 8 |i Printed edition:  |z 9783319761664 
830 0 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
856 4 0 |u https://doi.org/10.1007/978-3-319-76165-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)