Translation, Brains and the Computer A Neurolinguistic Solution to Ambiguity and Complexity in Machine Translation /

This book is about machine translation (MT) and the classic problems associated with this language technology. It examines the causes of these problems and, for linguistic, rule-based systems, attributes the cause to language's ambiguity and complexity and their interplay in logic-driven proces...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Scott, Bernard (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Machine Translation: Technologies and Applications, 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05240nam a2200505 4500
001 978-3-319-76629-4
003 DE-He213
005 20190619110505.0
007 cr nn 008mamaa
008 180606s2018 gw | s |||| 0|eng d
020 |a 9783319766294  |9 978-3-319-76629-4 
024 7 |a 10.1007/978-3-319-76629-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.N38 
072 7 |a UYQL  |2 bicssc 
072 7 |a COM073000  |2 bisacsh 
072 7 |a UYQL  |2 thema 
082 0 4 |a 006.35  |2 23 
100 1 |a Scott, Bernard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Translation, Brains and the Computer  |h [electronic resource] :  |b A Neurolinguistic Solution to Ambiguity and Complexity in Machine Translation /  |c by Bernard Scott. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 241 p. 55 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Machine Translation: Technologies and Applications,  |x 2522-8021 ;  |v 2 
505 0 |a 1 Introduction -- 2 Background -- Logos Model Beginnings -- Advent of Statistical MT -- Overview of Logos Model Translation Process -- Psycholinguistic and Neurolinguistic Assumptions -- On Language and Grammar -- Conclusion -- 3 - Language and Ambiguity: Psycholinguistic Perspectives -- Levels of Ambiguity -- Language Acquisition and Translation -- Psycholinguistic Bases of Language Skills -- Practical Implications for Machine Translation -- Psycholinguistics in a Machine -- Conclusion -- 4- Language and Complexity: Neurolinguistic Perspectives -- Cognitive Complexity -- A Role for Semantic Abstraction -- Connectionism and Brain Simulation -- Logos Model as a Neural Network -- Language Processing in the Brain -- MT Performance and Underlying Competence -- Conclusion -- 5 - Syntax and Semantics: Dichotomy or Integration? -- Syntax versus Semantics: Is There a Third, Semantico- Syntactic Perspective? -- Recent Views of the Cerebral Process -- Syntax and Semantics: How Do They Relate? -- Conclusion -- 6 -Logos Model: Design and Performance -- The Translation Problem -- How Do You Represent Natural Language? -- How Do You Store Linguistic Knowledge? -- How Do You Apply Stored Knowledge To The Input Stream? -- How do you Effect Target Transfer and Generation? -- How Do You Deal with Complexity Issues? -- Conclusion -- 7 - Some limits on Translation Quality -- First Example -- Second Example -- Other Translation Examples -- Balancing the Picture -- Conclusion -- 8 - Deep Learning MT and Logos Model -- Points of Similarity and Differences -- Deep Learning, Logos Model and the Brain -- On Learning -- The Hippocampus Again -- Conclusion -- Part II -- The SAL Representation Language -- SAL Nouns -- SAL Verbs -- SAL Adjectives -- SAL Adverbs. 
520 |a This book is about machine translation (MT) and the classic problems associated with this language technology. It examines the causes of these problems and, for linguistic, rule-based systems, attributes the cause to language's ambiguity and complexity and their interplay in logic-driven processes. For non-linguistic, data-driven systems, the book attributes translation shortcomings to the very lack of linguistics. It then proposes a demonstrable way to relieve these drawbacks in the shape of a working translation model (Logos Model) that has taken its inspiration from key assumptions about psycholinguistic and neurolinguistic function. The book suggests that this brain-based mechanism is effective precisely because it bridges both linguistically driven and data-driven methodologies. It shows how simulation of this cerebral mechanism has freed this one MT model from the all-important, classic problem of complexity when coping with the ambiguities of language. Logos Model accomplishes this by a data-driven process that does not sacrifice linguistic knowledge, but that, like the brain, integrates linguistics within a data-driven process. As a consequence, the book suggests that the brain-like mechanism embedded in this model has the potential to contribute to further advances in machine translation in all its technological instantiations. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Computational linguistics. 
650 0 |a Psycholinguistics. 
650 1 4 |a Natural Language Processing (NLP).  |0 http://scigraph.springernature.com/things/product-market-codes/I21040 
650 2 4 |a Computational Linguistics.  |0 http://scigraph.springernature.com/things/product-market-codes/N22000 
650 2 4 |a Psycholinguistics.  |0 http://scigraph.springernature.com/things/product-market-codes/N35000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319766287 
776 0 8 |i Printed edition:  |z 9783319766300 
776 0 8 |i Printed edition:  |z 9783030095383 
830 0 |a Machine Translation: Technologies and Applications,  |x 2522-8021 ;  |v 2 
856 4 0 |u https://doi.org/10.1007/978-3-319-76629-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)