Translation, Brains and the Computer A Neurolinguistic Solution to Ambiguity and Complexity in Machine Translation /

This book is about machine translation (MT) and the classic problems associated with this language technology. It examines the causes of these problems and, for linguistic, rule-based systems, attributes the cause to language's ambiguity and complexity and their interplay in logic-driven proces...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Scott, Bernard (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Machine Translation: Technologies and Applications, 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Introduction
  • 2 Background
  • Logos Model Beginnings
  • Advent of Statistical MT
  • Overview of Logos Model Translation Process
  • Psycholinguistic and Neurolinguistic Assumptions
  • On Language and Grammar
  • Conclusion
  • 3 - Language and Ambiguity: Psycholinguistic Perspectives
  • Levels of Ambiguity
  • Language Acquisition and Translation
  • Psycholinguistic Bases of Language Skills
  • Practical Implications for Machine Translation
  • Psycholinguistics in a Machine
  • Conclusion
  • 4- Language and Complexity: Neurolinguistic Perspectives
  • Cognitive Complexity
  • A Role for Semantic Abstraction
  • Connectionism and Brain Simulation
  • Logos Model as a Neural Network
  • Language Processing in the Brain
  • MT Performance and Underlying Competence
  • Conclusion
  • 5 - Syntax and Semantics: Dichotomy or Integration?
  • Syntax versus Semantics: Is There a Third, Semantico- Syntactic Perspective?
  • Recent Views of the Cerebral Process
  • Syntax and Semantics: How Do They Relate?
  • Conclusion
  • 6 -Logos Model: Design and Performance
  • The Translation Problem
  • How Do You Represent Natural Language?
  • How Do You Store Linguistic Knowledge?
  • How Do You Apply Stored Knowledge To The Input Stream?
  • How do you Effect Target Transfer and Generation?
  • How Do You Deal with Complexity Issues?
  • Conclusion
  • 7 - Some limits on Translation Quality
  • First Example
  • Second Example
  • Other Translation Examples
  • Balancing the Picture
  • Conclusion
  • 8 - Deep Learning MT and Logos Model
  • Points of Similarity and Differences
  • Deep Learning, Logos Model and the Brain
  • On Learning
  • The Hippocampus Again
  • Conclusion
  • Part II
  • The SAL Representation Language
  • SAL Nouns
  • SAL Verbs
  • SAL Adjectives
  • SAL Adverbs.