Stochastic Models for Time Series

This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap ar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Doukhan, Paul (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Mathématiques et Applications, 80
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04384nam a2200529 4500
001 978-3-319-76938-7
003 DE-He213
005 20191025111855.0
007 cr nn 008mamaa
008 180417s2018 gw | s |||| 0|eng d
020 |a 9783319769387  |9 978-3-319-76938-7 
024 7 |a 10.1007/978-3-319-76938-7  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Doukhan, Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Models for Time Series  |h [electronic resource] /  |c by Paul Doukhan. 
250 |a 1st ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XX, 308 p. 29 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathématiques et Applications,  |x 1154-483X ;  |v 80 
505 0 |a Part I Independence and Stationarity -- 1 Probability and Independence -- 2 Gaussian convergence and inequalities -- 3 Estimation concepts -- 4 Stationarity -- Part II Models of time series -- 5 Gaussian chaos -- 6 Linear processes -- 7 Non-linear processes -- 8 Associated processes -- Part III Dependence -- 9 Dependence -- 10 Long-range dependence -- 11 Short-range dependence -- 12 Moments and cumulants -- Appendices -- A Probability and distributions -- B Convergence and processes -- C R scripts used for the gures -- Index- List of figures. 
520 |a This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit theorems) are described under SRD; mixing and weak dependence are also reviewed. In closing, it describes moment techniques together with their relations to cumulant sums as well as an application to kernel type estimation.The appendix reviews basic probability theory facts and discusses useful laws stemming from the Gaussian laws as well as the basic principles of probability, and is completed by R-scripts used for the figures. Richly illustrated with examples and simulations, the book is recommended for advanced master courses for mathematicians just entering the field of time series, and statisticians who want more mathematical insights into the background of non-linear time series. . 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 0 |a Econometrics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Econometrics.  |0 http://scigraph.springernature.com/things/product-market-codes/W29010 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319769370 
776 0 8 |i Printed edition:  |z 9783319769394 
830 0 |a Mathématiques et Applications,  |x 1154-483X ;  |v 80 
856 4 0 |u https://doi.org/10.1007/978-3-319-76938-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)