Practical Mathematical Optimization Basic Optimization Theory and Gradient-Based Algorithms /

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Snyman, Jan A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Wilke, Daniel N. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Springer Optimization and Its Applications, 133
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04424nam a2200601 4500
001 978-3-319-77586-9
003 DE-He213
005 20191023182351.0
007 cr nn 008mamaa
008 180502s2018 gw | s |||| 0|eng d
020 |a 9783319775869  |9 978-3-319-77586-9 
024 7 |a 10.1007/978-3-319-77586-9  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Snyman, Jan A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Practical Mathematical Optimization  |h [electronic resource] :  |b Basic Optimization Theory and Gradient-Based Algorithms /  |c by Jan A Snyman, Daniel N Wilke. 
250 |a 2nd ed. 2018. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a XXVI, 372 p. 81 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 133 
505 0 |a 1.Introduction -- 2.Line search descent methods for unconstrained minimization.-3. Standard methods for constrained optimization.-4. Basic Example Problems -- 5. Some Basic Optimization Theorems -- 6. New gradient-based trajectory and approximation methods -- 7. Surrogate Models -- 8. Gradient-only solution strategies -- 9. Practical computational optimization using Python -- Appendix -- Index. 
520 |a This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills. . 
650 0 |a Mathematical optimization. 
650 0 |a Algorithms. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Numerical analysis. 
650 0 |a Computer software. 
650 0 |a Functions of real variables. 
650 1 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
650 2 4 |a Algorithms.  |0 http://scigraph.springernature.com/things/product-market-codes/M14018 
650 2 4 |a Operations Research, Management Science.  |0 http://scigraph.springernature.com/things/product-market-codes/M26024 
650 2 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Mathematical Software.  |0 http://scigraph.springernature.com/things/product-market-codes/M14042 
650 2 4 |a Real Functions.  |0 http://scigraph.springernature.com/things/product-market-codes/M12171 
700 1 |a Wilke, Daniel N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319775852 
776 0 8 |i Printed edition:  |z 9783319775876 
776 0 8 |i Printed edition:  |z 9783030084868 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 133 
856 4 0 |u https://doi.org/10.1007/978-3-319-77586-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)