Practical Mathematical Optimization Basic Optimization Theory and Gradient-Based Algorithms /

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Snyman, Jan A. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Wilke, Daniel N. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Springer Optimization and Its Applications, 133
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1.Introduction
  • 2.Line search descent methods for unconstrained minimization.-3. Standard methods for constrained optimization.-4. Basic Example Problems
  • 5. Some Basic Optimization Theorems
  • 6. New gradient-based trajectory and approximation methods
  • 7. Surrogate Models
  • 8. Gradient-only solution strategies
  • 9. Practical computational optimization using Python
  • Appendix
  • Index.